All Issue

2019 Vol.56, Issue 5 Preview Page
October 2019. pp. 535-547
Abstract


References
1 

Aguirre, M.Á., Hidalgo, M., Canals, A., Nóbrega, J.A., and Pereira-Filho, E.R., 2013. Analysis of waste electrical and electronic equipment (WEEE) using laser induced breakdown spectroscopy (LIBS) and multivariate analysis. Talanta, 117, 419-424.

10.1016/j.talanta.2013.09.04624209362
2 

Anzano, J., Bonilla, B., Montull‐Ibor, B., and Casas‐González, J., 2011. Plastic identification and comparison by multivariate techniques with laser‐induced breakdown spectroscopy. J. Appl. Polym. Sci., 121(5), 2710-2716.

10.1002/app.33801
3 

Aquino, F.W.B., Santos, J.M., Carvalho, R.R.V, Coelho, J.A.O., and Pereira-Filho, E.R., 2015. Obtaining information about valuable metals in computer and mobile phone scraps using laser-induced breakdown spectroscopy (LIBS). RSC Adv., 5(82), 67001-67010.

10.1039/C5RA07609A
4 

Awasthi, S., Kumar, R., Devanathan, A., Acharya, R., and Rai, A. K., 2017. Multivariate methods for analysis of environmental reference materials using laser-induced breakdown spectroscopy. Anal. Chem. Res., 12, 10-16.

10.1016/j.ancr.2017.01.001
5 

Brunner, P.H., 2011. Urban mining a contribution to reindustrializing the city. J. Ind. Ecol., 15(3), 339-341.

10.1111/j.1530-9290.2011.00345.x
6 

Carvalho, R.R.V., Coelho, J.A.O., Santos, J.M., Aquino, F.W. B., Carneiro, R.L., and Pereira-Filho, E.R., 2015. Laser- induced breakdown spectroscopy (LIBS) combined with hyperspectral imaging for the evaluation of printed circuit board composition. Talanta, 134, 278-283.

10.1016/j.talanta.2014.11.01925618668
7 

Charles, R.G., Douglas, P., Hallin, I.L., Matthews, I., and Liversage, G., 2017. An investigation of trends in precious metal and copper content of RAM modules in WEEE: Implications for long term recycling potential. Waste Manag., 60, 505-520.

10.1016/j.wasman.2016.11.01827890594
8 

Clegg, S.M., Sklute, E., Dyar, M.D., Barefield, J.E., and Wiens, R.C., 2009. Multivariate analysis of remote laser- induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques. Spectrochim. Acta Part B At. Spectrosc., 64(1), 79-88.

10.1016/j.sab.2008.10.045
9 

Cremers, D.A., Yueh, F.Y., Singh, J.P., and Zhang, H., 2006. Laser‐induced breakdown spectroscopy, elemental analysis. Encycl. Anal. Chem., On the Web.,

10.1002/ 9780470027318.a0708.
10 

Cui, J., and Forssberg, E., 2003. Mechanical recycling of waste electric and electronic equipment: A review. J. Hazard. Mater., 99(3), 243-263.

10.1016/S0304-3894(03)00061-X
11 

Filzmoser, P., Liebmann, B., and Varmuza, K., 2009. Repeated double cross validation. J. Chemom., 23(4), 160-171.

10.1002/cem.1225
12 

Gaudiuso, R., Dell'Aglio, M., Pascale, O.D., Senesi, G.S., and Giacomo, A.D., 2010. Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results. Sensors, 10(8), 7434-7468.

10.3390/s10080743422163611PMC3231154
13 

Goodfellow, I., Bengio, Y., and Courville, A., 2016. Deep learning, MIT press, Massachusetts, USA, 800p.

14 

Gurell, J., Bengtson, A., Falkenström, M., and Hansson, B.A. M., 2012. Laser induced breakdown spectroscopy for fast elemental analysis and sorting of metallic scrap pieces using certified reference materials. Spectrochim. Acta Part B At. Spectrosc., 74, 46-50.

10.1016/j.sab.2012.06.013
15 

Haider, Z., Munajat, Y.B., Kamarulzaman, R., and Shahami, N., 2015. Comparison of single pulse and double simultaneous pulse laser induced breakdown spectroscopy. Anal. Lett., 48(2), 308-317.

10.1080/00032719.2014.940532
16 

He, Y., Liu, X., Lv, Y., Liu, F., Peng, J., Shen, T., Zhao, Y., Tang, Y., and Luo, S., 2018. Quantitative analysis of nutrient elements in soil using single and double-pulse laser-induced breakdown spectroscopy. Sensors, 18(5), 1526.

10.3390/s1805152629751689PMC5982673
17 

Hu, C. and Zhou, L., 2016. Failure analysis for micro-short circuit between two pins in printed circuit board assembly. 2016 11th ICRMS., IEEE, Hangzhou, China, p.1-4.

10.1109/ICRMS.2016.8050164
18 

In, K. J. and Sip, J. S., 1996. Electron Microscopy for Polymers (TEM , SEM , STEM). Polym. Sci. Tech., 7(4), 437-444.

19 

Kim, G.C., 2003. Introduction to Integrated Circuit Design (1st Ed.), Green Press, Seoul, Korea, 445p.

20 

Kim, J.H., Kim, B.J., Jung, H.W., amd Shin, S.R., 2018. Environmental Statistics and Data analysis (Revised Ed.), Hannarae Publishing co., Seoul, Korea, 496p.

21 

Lal, B., Zheng, H., Yueh, F.Y., and Singh, J.P., 2004. Parametric study of pellets for elemental analysis with laser- induced breakdown spectroscopy. Appl. Opt., 43(13), 2792- 2797.

10.1364/AO.43.00279215130021
22 

Li, J., Lu, H., Guo, J., Xu, Z., and Zhou, Y. 2007. Recycle technology for recovering resources and products from waste printed circuit boards. Environ. Sci. Technol., 41(6), 1995-2000.

10.1021/es061824517410796
23 

Li, J., Lu, J., Lin, Z., Gong, S., Xie, C., Chang, L., Yang, L., and Li, P., 2009. Effects of experimental parameters on elemental analysis of coal by laser-induced breakdown spectroscopy. Opt. Laser Technol., 41(8), 907-913.

10.1016/j.optlastec.2009.03.003
24 

Luque-García, J.L., Soto-Ayala, R., and De Luque Castro, M.D., 2002. Determination of the major elements in homogeneous and heterogeneous samples by tandem laser-induced breakdown spectroscopy-partial least square regression. Microchem. J., 73, 355-362.

10.1016/S0026-265X(02)00124-8
25 

Martin, M.Z., Labbé, N., Rials, T.G., and Wullschleger, S.D., 2005. Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra. Spectrochim. Acta Part B At. Spectrosc., 60(7-8), 1179-1185.

10.1016/j.sab.2005.05.022
26 

MathWorks, 2019.08.07., https://kr.mathworks.com/help/deep learning/index.html?lang=en

27 

National Assembly Research Service, 2009. Problems and Improvement for Recycling of Rare Metals, NARS pending issue report vol. 43, Seoul, Korea, 34p.

28 

National Research Council for Economics, Humanities and Social Sciences, 2010. Study on Institutional and Technical Measures to Promote Recycling of Metals from Waste Electric and Electronic Equipments, Research Report 10-02-86, Seoul, Korea, 131p.

29 

Noel, C., 1990. the Origins of Kriging. Math. Geol., 22(3), 47-55.

10.1007/BF00889887
30 

Park E.K, Jung, B.B., Choi, T.J., Choi, W.Z., and Oh, S.K., 2017. Automatic sorting system based on laser-induced technology for black plastics from used small household appliances. Proceedings of the 2017 Autumn Conference of The Korea Society of Waste Management, the Korea Society of Waste Management, Incheon, Korea, p. 12.

31 

Putnam, R.A., Mohaidat, Q.I., Daabous, A., and Rehse, S.J., 2013. A comparison of multivariate analysis techniques and variable selection strategies in a laser-induced breakdown spectroscopy bacterial classification. Spectrochim. Acta Part B At. Spectrosc., 87, 161-167.

10.1016/j.sab.2013.05.014
32 

Raele, M.P., De Pretto, L.R., and Zezell, D.M., 2017. Soldering mask laser removal from printed circuit boards aiming copper recycling. Waste Manag., 68, 475-481.

10.1016/j.wasman.2017.07.01928739025
33 

Seoul Resource Center, 2019.08.07., http://www.srcenter.kr.

34 

Shin, S.H., Lee, J.P., Moon, Y.M., Choi, J.H., and Jeong, S.H., 2018. Classification of metal scraps using laser induced breakdown spectroscopy. J. Korean Inst. Resour. Recycl., 27(1), 31-37.

35 

Shlens, J., 2014. A tutorial on principal component analysis, Cornell University.

36 

Thomsen, V., Schatzlein, D., and Mercuro, D., 2003. Limits of detection in spectroscopy. Spectroscopy, 18(12), 112-114.

37 

Tognoni, E. and Cristoforetti, G., 2016. Signal and noise in laser induced breakdown spectroscopy: An introductory review. Opt. Laser Technol., 79, 164-172.

10.1016/j.optlastec.2015.12.010
38 

Tuncuk, A., Stazi, V., Akcil, A., Yazici, E. Y., and Deveci, H., 2012. Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Miner. Eng., 25(1), 28-37.

10.1016/j.mineng.2011.09.019
39 

Tunsu, C., Petranikova, M., Gergorić, M., Ekberg, C., and Retegan, T., 2015. Reclaiming rare earth elements from end- of-life products: A review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy, 156, 239-258.

10.1016/j.hydromet.2015.06.007
40 

Varmuza, K. and Filzmoser, P. 2009. Introduction to multivariate statistical analysis in chemometrics (1st Ed.). Vol 1., CRC press, Boca Raton, Florida, USA, 336p.

41 

Yu, K.Q., Zhao, Y.R., Liu, F., and He, Y., 2016. Laser-Induced breakdown spectroscopy coupled with multivariate chemometrics for variety discrimination of soil. Sci. Rep., 6, 27574.

10.1038/srep2757427279284PMC4899786
42 

Zhao, N., Wu, Z.S., Zhang, Q., Shi, X.Y., Ma, Q., and Qiao, Y. J., 2015. Optimization of parameter selection for partial least squares model development. Sci. Rep., 5, 11647.

10.1038/srep1164726166772PMC4499800
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 56
  • No :5
  • Pages :535-547
  • Received Date :2019. 09. 05
  • Revised Date :2019. 10. 15
  • Accepted Date : 2019. 10. 25