All Issue

2022 Vol.59, Issue 1 Preview Page

Research Paper

28 February 2022. pp. 91-98
Abstract
References
1
Agbalaka, C.C., Dandekar, A.Y., Patil, S.L., Khataniar, S., and Hemsath, J., 2008. The effect of wettability on oil recovery: A review, Proc. of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, 20-22 October 2008. 10.2118/114496-MS
2
Agency for Technology and Science, 2020.02.24., https://phys.org/news/2020-02-surface-tension-fluids-industrial.html.
3
Al-Anssari, S., Barifcani, A., Wang, S., Maxim, L., and Iglauer, S., 2016. Wettability alteration of oil-wet carbonate by silica nanofluid, Journal of Colloid and Interface Science, 461(1), p.435-442. 10.1016/j.jcis.2015.09.05126414426
4
Ali, J.A., Kolo, K., Manshad, A.K., and Mohammadi, A.H., 2018. Recent advances in application of nanotechnology in chemical enhanced oil recovery: Effects of nanoparticles on wettability alteration, interfacial tension reduction, and flooding, Egyptian Journal of Petroleum, 27, p.1371-1383. 10.1016/j.ejpe.2018.09.006
5
Bennetzen, M. and Mogensen, K., 2014, Novel applications of nanoparticles for future enhanced oil recovery, proc. of the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 10-12 Dec, 2014 IPTC-17857-MS. 10.2523/17857-MS
6
Derkani, M.H., Fletcher, A.J., Abdallah, W., Sauerer, B., Anderson, J., and Zhang, Z.J., 2018. Low salinity waterflooding in carbonate reservoirs: review of interfacial mechanisms, Colloids Interfaces, 2(2), p.1-43. 10.3390/colloids2020020
7
El-Diasty, A.I. and Ragab, A.M.S., 2013. Applications of Nanotechnology in the Oil & Gas Industry: Latest Trends Worldwide & Future Challenges in Egypt, Proc. of the North Africa Technical Conference & Exhibition, Cairo, Egypt, 15-17 April 2013. 10.2118/164716-MS
8
Haroun, M., Hassan, S.A., Ansari, A., Kindy, N.A., Sayed, N.A., Ali, B., and Sarma, H., 2012. Smart Nano-EOR Process for Abu-Dhabi Carbonate Reservoirs, Proc. of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 11-14 November. 10.2118/162386-MS
9
He, W., Wu, D., Li, J., Zhang, K., Xiang, Y., Long, L., Qin, S., Yu, J., and Zhang, Q., 2013. Surface modification of colloidal silica nanoparticles: Controlling the size and grafting process, Bulletin of the Korean Chemical Society, 34, p.2747-2752. 10.5012/bkcs.2013.34.9.2747
10
Jang, H., Lee, W., and Lee, J., 2019. Rheological characteristics of non-Newtonian GPTMS-SiO2 nanofluids, International Communications in Heat and Mass Transfer, 106(1), p.38-45. 10.1016/j.icheatmasstransfer.2019.05.002
11
Kim, J. and Lee, J., 2021. Investigation of the mechanisms and technical trends of Nano-EOR in carbonate reservoirs, Journal of the Korean Society of Mineral and Energy Resources Engineers, 58(6), p.580-591. 10.32390/ksmer.2021.58.6.580
12
Kopanichuk, I.V., Vanin, A.A., and Brodskaya, E.N., 2017. Disjoining pressure and structure of a fluid confined between nanoscale surfaces, Colloids and Surface A: Physicochem Engineering Aspects, 527(1), p.42-48. 10.1016/j.colsurfa.2017.04.072
13
Kumar, R. and Sharma, T., 2018, Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO2-TiO2 nanocomposites for oilfield applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 539, p.171-183. 10.1016/j.colsurfa.2017.12.028
14
Li, K., Wang, D., and Jiang, S., 2018. Review on enhanced oil recovery by nanofluids, Oil & Gas Science and Technology, 73(4), 37p. 10.2516/ogst/2018025
15
Luo, K., Zhou, S., Wu, L., and Gu, A., 2008. Dispersion and functionalization of nonaqueous synthesized zirconia nanocrystals via attachment of silane coupling agents, Langmuir, 24, p.11497-11505. 10.1021/la801943n18808164
16
Mahmoudpour, M. and Pourafshary, P., 2021. Investigation of the effect of engineered water/nanofluid hybrid injection on enhanced oil recovery mechanisms in carbonate reservoirs, Journal of Petroleum Science and Engineering, 196, 107662p. 10.1016/j.petrol.2020.107662
17
Manshad, A.K., Olad, M., Taghipour, S.A., Nowrouzi, I., and Mohammadi, A.H., 2016. Effects of water soluble ions on interfacial tension (IFT) between oil and brine in smart and carbonated smart water injection process in oil reservoirs, Journal of Molecular Liquids, 223(1), p.987-993. 10.1016/j.molliq.2016.08.089
18
Moghaddam, R.N. Bahramian, A., Fakhroueian, Z., Karimi, A., and Arya, S., 2015. Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks, Energy and Fuels, 29(4), p.2111-2119. 10.1021/ef5024719
19
Mohan, K., Gupta, R., and Mohanty, K.K., 2011. Wettability altering secondary oil recovery in carbonate rocks, Energy Fuels, 25(9), p.3966-3973. 10.1021/ef200449y
20
Moosavi, S.R., Rayhani, M., Malayeri, M.R., and Riazi, M., 2019. Impact of monovalent and divalent cationic and anionic ions on wettavility alteration of dolomite rocks, Journal of Molecular Liquids, 281, p.9-19. 10.1016/j.molliq.2019.02.078
21
Mukherjee, S., 2013. Preparation and stability of nanofluids-A review, IOSR Journal of Mechanical and Civil Engineering, 9, p.63-69. 10.9790/1684-0926369
22
Nowrouzi, I., Manshad, A.K., and Mohammadi, A.H., 2019. Effects of dissolved carbon dioxide and ions in water on the dynamic interfacial tension of water and oil in the process of carbonated smart water injection into oil reservoirs, Fuel, 243(1), p.569-578. 10.1016/j.fuel.2019.01.069
23
RezaeiDoust, A., Puntervold, T., Strand, S., and Austad, T., 2009. Smart water as wettability modifier in carbonate and sandstone: a discussion of similarities/differences in the chemical mechanisms, Energy Fuels, 23(1), p.4479-4485. 10.1021/ef900185q
24
Sadatshojaei, E., Jamialahmadi, M., Esmaeilzadeh, F., and Ghazanfari, M.H., 2016. Effects of low-salinity water coupled with silica nanoparticles on wettability alteration of dolomite at reservoir temperature, Petroleum Science and Technology, 34(15), p.1345-1351. 10.1080/10916466.2016.1204316
25
Sharma, G. and Mohanty, K., 2013. Wettability alteration in high-temperature and high-salinity carbonate reservoirs, SPE Journal, 18(4), p.646-655. 10.2118/147306-PA
26
Son, H. and Sung, W., 2016. Study on enhanced oil recovery using silica nanoparticles and zwitterionic surfactants in brine, Journal of the Korean Society of Mineral and Energy Resources Engineers, 53(5), p.498-505. 10.12972/ksmer.2016.53.5.498
27
Song, S.K., Kim, J., Hwang, K., and Ha, K., 2011. Spectroscopic analysis of silica nanoparticles modified with silane coupling agent, Korea Chemical Engineering Research, 49(2), p.181-186. 10.9713/kcer.2011.49.2.181
28
Sun, X., Zhang, Y., Chen, G., and Gai, Z., 2017. Application of nanoparticles in enhanced oil recovery: a critical review of recent progress, Energies, 10(3), 345. 10.3390/en10030345
29
Wasan, D., Nikolov, A., and Kondiparty, K., 2011. The wetting and spreading of nanofluids on solids: role of the structural disjoining pressure, Current Opinion in Colloid & Interface Science, 16(4), p.344-349. 10.1016/j.cocis.2011.02.001
30
Zhang, H., Ramakrishnan, T. S., Nikolov, A., and Wasan, D., 2016. Enhanced oil recovery driven by nanofilm structural disjoining pressure: flooding experiments and microvisualization, Energy Fuels, 30, p.2771-2779. 10.1021/acs.energyfuels.6b00035
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 59
  • No :1
  • Pages :91-98
  • Received Date : 2022-01-11
  • Revised Date : 2022-02-15
  • Accepted Date : 2022-02-22