All Issue

2019 Vol.56, Issue 2 Preview Page

Research Paper

30 April 2019. pp. 140-154
Abstract
References
1
Akcil, A., and Koldas, S., 2006. Acid Mine Drainage (AMD): causes, treatment and case studies. J. Cleaner prod., 14(12-13), 1139-1145.
10.1016/j.jclepro.2004.09.006
2
ASTM (American Society for Testing and Materials) E2060-06, 2014a. Standard Guide for Use of Coal Combustion Products for Solidification/Stabilization of Inorganic Wastes.
3
ASTM (American Society for Testing and Materials) E2243-13, 2013. Standard Guide for Use of Coal Combustion Products (CCPs) for Surface Mine Reclamation: Re-contouring and Highwall Reclamation.
4
ASTM (American Society for Testing and Materials) E2277-14, 2014b. Standard Guide for Design and Construction of Coal Ash Structural Fills.
5
ASTM (American Society for Testing and Materials) E50, 2016. Standard Practices for Apparatus, Reagents, and Safety Considerations for Chemical Analysis of Metals, Ores, and Related Materials.
6
Belem, T. and Benzaazoua, M., 2008. Design and application of underground mine paste backfill technology. Geotech. Geol. Eng., 26(2), 147-174.
10.1007/s10706-007-9154-3
7
Benzaazoua, M., Bussiere, B., Demers, I., Aubertin, M., Fried, E., and Blier, A., 2008. Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: Application to mine Doyon, Quebec, Canada. Miner. Eng., 21(4), 330-340.
10.1016/j.mineng.2007.11.012
8
CCSD (Cooperative Research Centre for Coal in Sustainable Development), 2006. Use of Coal Ash in Mine Backfill and Related Applications
9
Cho, Y.G., Nam, S.Y., Lee, Y.M., Kim, C.S., Seo, S.S., Jo, S.H., Lee. H.W., and Ahn, J.W., 2017. Characterization of controlled low-strength materials utilizing CO2-solidified CFBC coal ash. J. Environ. Sci. Int., 26(11), 1267-1274.
10.5322/JESI.2017.26.11.1267
10
Cho, Y.K., Kim, C.S., Nam, S.Y., Cho, S.H., Lee, H.W., and Ahn, J.W., 2018. Properties evaluation and flowability of controlled low strength materials utilizing industrial By-products. KSEE, 27(4), 64-69.
11
Choi, W.S., Kim, E.S., and Yang, I.J., 2017. Design and construction cases of preventing ground subsidence in mine. Tunn Undergr Space, 27(6), 393-405.
12
Das, P., Pal, S.K., Mohanty, P.R., Priyam, P., Bharti, A.K., and Kumar, R., 2017. Abandoned mine galleries detection using electrical resistivity tomography method over Jharia coal field, India. J. Geol. Soc. India, 90(2), 169-174.
10.1007/s12594-017-0695-7
13
Huang, Y., Li, J., Song, T., Kong, G., and Li, M., 2016. Analysis on filling ratio and shield supporting pressure for overburden movement control in coal mining with compacted backfilling. Energies, 10(1), 31.
10.3390/en10010031
14
Hudson, E., Kulessa, B., Edwards, P., Williams, T., and Walsh, R., 2018. Integrated hydrological and geophysical characterisation of surface and subsurface water contamination at abandoned metal mines. Water Air Soil Pollut., 229(8), 256.
10.1007/s11270-018-3880-430237638PMC6133111
15
Hwang S.H., Park K.G., and Shin J.H., 2005. A review on the geophysical application to mine hazard problems in Korea. J. Korean Soc. Miner. Energy Resour. Eng., 42(1), 61-67.
16
Jang, J.G., Ji, S.W., and Ahn, J.W., 2017. Utilization of circulating fluidized bed combustion ash and related specifications for mine backfills. J. of Korean Inst. of Resources Recycling, 26(2), 71-79.
10.7844/kirr.2017.26.2.71
17
Jung Y.W., 2008. Mining backfill method and application case. Mine Reclamation Technology, 2(1), 20-28.
18
Kim, J.S., Han, S.H., Yoon, W.J., Kim, D.W., Lee, K.J., Choi, S.H., and Lee, P.K., 2003. Geophysical surveys for delineation of leachate flows from AMD and buried rock wastes in Kwangyang abandoned mine. Econ. Environ. Geol., 36(2), 123-131.
19
Kim, S.L. and Park, J.H., 2015. Research and development trends for mine subsidence prevention technology in Korea. Tunn Undergr Space, 25(5), 408-416.
10.7474/TUS.2015.25.5.408
20
Lee, B.M., and Oh, S.H., 2016. Modified electrical resistivity survey and its interpretation for leakage path detection of water facilities. Geophys. and Geophys. Explor., 19(4), 200-211.
10.7582/GGE.2016.19.4.200
21
Lee, B.M. and Oh, S.H., 2018. Modified electrical survey for effective leakage detection at concrete hydraulic facilities. J. Appl. Geophys., 149, 114-130.
10.1016/j.jappgeo.2017.08.006
22
Lee, B.M., Oh, S.H., and Im, E.S., 2015. Modified electrical resistivity survey for leakage detection of a waterside concrete barrage. Geophys. and Geophys. Explor., 18(5), 115-124.
10.7582/GGE.2015.18.3.115
23
Lee, S.E., Park, S.J., Kim, H.S., Jang, H.S., and Kim, T.H., 2012. A study on the model test for mine filling using coal ash. Tunn Undergr Space, 22(6), 449-461.
10.7474/TUS.2012.22.6.449
24
Mishra, M.K. and Karanam, U.R., 2006. Geotechnical characterization of fly ash composites for backfilling mine voids. Geotech. Geol. Eng., 24(6), 1749-1765.
10.1007/s10706-006-6805-8
25
Open data portal, 2019.02.18., https://www.data.go.kr/dataset/3077830/fileData.do
26
Park, C.H., Jung, Y.H., Lee, Y.D., and Park, J.O., 2010. Application of geophysical survey for detecting the skarn ore deposit. The J. Engineering Geology, 20(1), 71-78.
27
Qi, T., Feng, G., Zhang, Y., Guo, J., and Guo, Y., 2015. Effects of fly ash content on properties of cement paste backfilling. J. Residuals Sci. Technol., 12(3), 133-141.
10.12783/issn.1544-8053/12/3/3
28
Ram, L.C., and Masto, R.E., 2010. An appraisal of the potential use of fly ash for reclaiming coal mine spoil. J. Environ. Manage., 91(3), 603-617.
10.1016/j.jenvman.2009.10.00419914766
29
Sheshpari, M., 2015. A review of underground mine backfilling methods with emphasis on cemented paste backfill, Electron. J. Geotech. Eng., 20(13), 5183-5208.
30
Sim, M.S., Ju, H.T., Kim, K.S., and Kim, J.S., 2014. Case Studies of Geophysical Mapping of Hazard and contaminated Zones in Abandoned Mine Lands. The J. Engineering Geology, 24(4), 525-534.
10.9720/kseg.2014.4.525
31
Sivakugan, N., Veenstra, R., and Naguleswaran, N., 2015. Underground mine backfilling in Australia using paste fills and hydraulic fills. Int. J. of Geosynth. and Ground Eng, 1(2), 18.
10.1007/s40891-015-0020-8
32
Spitzer, K., 1995. A 3-D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods. Geophys. J. Int., 123(3), 903-914.
10.1111/j.1365-246X.1995.tb06897.x
33
Tesarik, D.R., Seymour, J.B., and Yanske, T.R., 2009. Long-term stability of a backfilled room-and-pillar test section at the Buick Mine, Missouri, USA. Int. J. Rock Mech. Min. Sci., 46(7), 1182-1196.
10.1016/j.ijrmms.2008.11.010
34
USEPA, 2001. Coal Remining - Best Management Practices Guidance Manual.
35
Wu, D., Yang, B., and Liu, Y., 2015. Transportability and pressure drop of fresh cemented coal gangue-fly ash backfill (CGFB) slurry in pipe loop. Powder Technol., 284, 218-224.
10.1016/j.powtec.2015.06.072
36
Yang, I.J., Shin, D.C., Yoon, B.S., Mok, J.H., Kim, H.S., and Lee, S.E., 2014. A study on the model test for pneumatic mine-filling. Tunn Undergr Space, 24(6), 449-463.
10.7474/TUS.2014.24.6.449
37
Yoo, J.C., Ji, S.W., Ahn, J.W., Kim, C.S., and Shin, H.Y., 2017. A case study of mine environmental restoration using coal ash. J. of Korean Inst. of Resources Recycling, 26(2), 80-88.
10.7844/kirr.2017.26.2.80
38
Yoo, J.C., Ji, S.W., and Shin, H.Y., 2018. Leaching characteristics of heavy metals in the bottom ash from circulating fluidized bed combustion, in order for application to limestone mine backfilling, J. Korean Soc. Miner. Energy Resour. Eng., 55(2), 97-105.
10.12972/ksmer.2018.55.2.97
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 56
  • No :2
  • Pages :140-154
  • Received Date : 2019-03-06
  • Revised Date : 2019-04-24
  • Accepted Date : 2019-04-29