All Issue

2019 Vol.56, Issue 1 Preview Page

Research Paper

28 February 2019. pp. 53-61
Abstract
References
1
Boswell, R. and Collett, T.S., 2011. Current perspectives on gas hydrate resources. Energy and Environmental Science, 4(4), 1206-1215.
10.1039/C0EE00203H
2
Cha, M.J. and Min, K.W., 2018. Overview of gas hydrates as a future energy source and their physical/chemical properties. J. Korean Society of Mineral and Energy Resources Engineers, 55(6), 670-687.
10.32390/ksmer.2018.55.6.670
3
Chin, L.Y., Silpngarmert, S., and Schoderbek, D.A., 2011. Subsidence prediction by coupled modeling of geomechanics and reservoir simulation for methane hydrate reservoirs. Proc. of the 45th US Rock Mechanics/Geomechanics Symposium, San Francisco, USA, 16p.
4
Collett, T.S., 2002. Energy resource potential of natural gas hydrates. AAPG Bulletin, 86(11), 1971-1992.
5
Gil, S.M., Shin, H.J., Lee, S.M., Lim, J.S., and Lee, J.H., 2017. Numerical analysis of dissociation in gas hydrate experimental production system using depressurization. J. Korean Society of Mineral and Energy Resources Engineers, 54(3), 233-241.
10.12972/ksmer.2017.54.3.233
6
Huh, D.G. and Lee, J.Y., 2017. Overview of gas hydrates R&D. J. Korean Society of Mineral and Energy Resources Engineers, 54(2), 201-214.
10.12972/ksmer.2017.54.2.201
7
Huh, D.G., 2005. Status of gas hydrate research in Korea. J. Korean Society for Geosystem Engineering, 42(3), 206-213.
8
Kim, A.R., Cho, G.C., Song, K.I., and Kim, S.J., 2014. Settlement prediction in the ulleung basin due to gas hydrate production. Offshore Technology Conference, Texas, USA, 10p.
10.4043/25308-MS
9
Kim, H.M. and Kim, A.R., 2016. Numerical analysis for fault reactivation during gas hydrate production. Tunnel and Underground Space, 26(1), 59-67.
10.7474/TUS.2016.26.2.059
10
Kim, H.M., 2015. Numerical analysis for geomechanical deformation of sea bed due to gas hydrate dissociation. J. Korean Society of Mineral and Energy Resources Engineers, 52(2), 148-157.
10.12972/ksmer.2015.52.2.148
11
Lim, D.H., 2013. Numerical analysis for prediction of mechanical behavior of marine sediment during depressurization process of gas hydrate, MS Thesis, Seoul National University.
12
Masayuki, H., Yanghui, L., Jun, Y., Yukio, N., Norimasa, Y., Akira, N., and Yongchen, S., 2013. Mechanical behavior of gas-saturated methane hydrate-bearing sediments. J. Geophys. Res., 118(10), 5185-5194.
10.1002/2013JB010233
13
Masui, A., Haneda, H., Ogata, Y., and Aoki, K., 2005. Effect of methane hydrate formation on shear strength of synthetic methane hydrate sediments. Proc. of the 5th International Offshore and Polar Engineering Conference, Seoul, Korea, 6p.
14
Moridis, G.J., Kim, J.H., Reagan, M.T., and Kim, S.J., 2013. Feasibility of gas production from a gas hydrate accumulation at the UBGH2-6 site of the Ulleung basin in the Korean East Sea. J. Petroleum Science and Engineering, 45(2), 180-210.
10.1016/j.petrol.2013.03.002
15
Moridis, G.J., Kim, J.H., Reagan, M.T., and Kim, S.J., 2014. System response during short- and long-term gas production from a gas hydrate deposit at the site of a planned field test in the ulleung basin of the korean east sea. Offshore Technology Conference, Texas, USA, 29p.
10.4043/25384-MS
16
Moridis, G.J., Reagan, M.T., Kim, S.J., Seol, Y., and Zhang, K., 2009. Evaluation of the gas production potential of marine hydrate deposits in the ulleung basin of the korean east sea. SPE Journal, 14(4), 759-781.
10.2118/110859-PA
17
Park, S.S., 2008. A Study on submarine slope failure due to gas hydrate dissociation. J. Korean Society for Geosystem Engineering, 45(2), 164-173.
18
Rutqvist, J. and Moridis, G.J., 2007. Numerical studies of geomechanical stability of hydrate-bearing sediments. Offshore Technology Conference, Texas, USA, 21p.
10.4043/18860-MS
19
Rutqvist, J., Grover, T., and Moridis, G.J., 2008. Coupled hydrological, thermal and geomechanical analysis of wellbore stability in hydrate-bearing sediments. Offshore Technology Conference, Texas, USA, 17p.
10.4043/19572-MS
20
Rutqvist, J., Moridis, G.J., Grover, T., and Collett, T., 2009. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production. J. Petroleum Science and Engineering, 67(1), 1-12.
10.1016/j.petrol.2009.02.013
21
Rutqvist, J., Moridis, G.J., Grover, T., Silpnagarmert, S., Collett, T., and Holdich, S.A., 2012. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments. J. Petroleum Science and Engineering, 92(1), 65-81.
10.1016/j.petrol.2012.06.004
22
Sakamoto, Y., Shimokawara, M., Ohga, K., Miyazaki, K., Tenma, N., Komai, T., Aoki, K., and Yamaguchi, T., 2008. Field scale simulation for consolidation and gas production behavior during depressurization process of methane hydrate in marine Sediments. Offshore Technology Conference, Texas, USA, 8p.
10.4043/19283-MS
23
Shin, H.J., Lim, J.S., and Kim, S.J., 2012. Estimation of porosity and saturation in gas hydrate bearing sediments using well logs and core analysis data of the 2nd wells in Ulleung basin, East Sea, Korea. J. Korean Society for Geosystem Engineering, 49(2), 175-185.
24
Suk, H.S., Ahn, T.W., Lee, J.H., Lee, M.H., and Lee, J.Y., 2018. Development of gas hydrate experimental production system combined with X-ray CT. J. Korean Society of Mineral asnd Energy Resources Engineers, 55(3), 226-237.
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 56
  • No :1
  • Pages :53-61
  • Received Date : 2019-01-23
  • Revised Date : 2019-02-21
  • Accepted Date : 2019-02-22