All Issue

2018 Vol.55, Issue 5

Research Paper

31 October 2018. pp. 371-382
Abstract
References
1
Bachand, P. A.M. and Horne, A. J., 2000. Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecological Engineering, 14(1-2), 17-32.
10.1016/S0925-8574(99)00017-8
2
Cho, K. S. and Jung, H. K., 2017. Methane mitigation technology using methanotrophs: A review. Microbiol. Biotechnol. Lett. 45(3), 185-199.
3
Groh,T. A., Gentry, L. E., and David, M. B., 2015. Nitrogen removal and greenhouse gas emissions from constructed wetlands receiving tile drainage water. J. Environ. Qual., 44(3), 1001-1010.
10.2134/jeq2014.10.041526024280
4
Heilweil, V. M., Stolp, B. J., Kimball, B. A., Susong, D. D., Marston, T. M., and Gardner, P. M., 2013. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development. Groundwater, 51(4), 511-524.
10.1111/gwat.1207923758706
5
Jang, M. H. 2012. Forecasting technology of methane gas and subsidence for application of longwall mining. KORES, 49(4), 590-598.
6
Jeong, J. H., Kang, S. J., Lim, J. M., and Lee, J. H., 2016. Comparison and optimization of flux chamber methods of methane emissions from landfill surface area. J. Korean. Soc. Environ. Eng., 38(10), 535-542.
7
Ji S. W. and Kim, S. J., 2003. The contamination of groundwater by acid mine drainage in the vicinity of the Hanchang coal mine and the efficiency of the passive treatment system. J. KoSSGE, 8(2), 9-18.
8
Jung, S. H., Ji, S. W., Kang, H. J., Yim, G. J., and Cheong, Y. W., 2012. Biotechnology in passive treatment of acid mine drainage: a review. The Korean Society for Geosystem Engineering, 49(6), 844-854.
10.5916/jkosme.2012.36.6.844
9
Karakurt, I., Aydin, G., and Aydiner, K., 2012. Sources and mitigation of methane emissions by sectors: A critical review. Renewable Energy, 39(1), 40-48.
10.1016/j.renene.2011.09.006
10
Kim D. S. and Kim, S. Y., 2013. N2O and CH4 emission from upland forest soils using chamber methods. J. KOSAE, 29(6), 789-800.
10.5572/KOSAE.2013.29.6.789
11
Kim, D. S. and Na, U. S., 2013. Characteristics of greenhouse gas emissions from freshwater wetland and tidal flat in Korea. J. KOSAE, 29(2), 171-185.
10.5572/KOSAE.2013.29.2.171
12
Kim, S. Y. and Choi, J. H., 2011. Effects and importance of climate change on the biogeochemical cycles of wetlands. An academic conference of the Korean Society for Environmental Education, KOSEE, Seoul, Korea, p.278-283.
13
Kolmert, Å. and Johnson, D. B., 2001. Remediation of acidic waste waters using immobilised, aciophilic sulfate-reducing bacteria. J. Chem. Technol. Biotechnol., 76(8), 836-843.
10.1002/jctb.453
14
Krause, E. and Pokryszka, Z., 2013. Investigation on methane emission from flooded workings of closed coal mines. J. Sust. Min., 12(2), 40-45.
10.7424/jsm130206
15
Lee, J. H. Woo, H. J., Jeong, K. S., Choi, J. U., and Park, K. S., 2017. Evaluation of methane(CH4) gas emissions and sink sources according to the mean size of sediment in the tidal flat at Taean, Midwet Korea. J. international area studies, 21(2), 123-147.
16
Li, Y. L., Wang, J., Yue, Z. B., Tao, W., Yang, H. B., Zhou, Y. F., and Chen, T. H., 2017. Simultaneous chemical oxygen demand removal, methane production and heavy metal precipitation in the biological treatment of landfill leachate using acid mine drainage as sulfate resource. J. Biosci. Bioeng, 124(1), 71-75.
10.1016/j.jbiosc.2017.02.00928279646
17
Maucieri, C., Barbera, A. C., Vymazal, J., Borin, M., 2017. A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agric. For. Meteorol., 236, 175-193.
10.1016/j.agrformet.2017.01.006
18
Ministry of Environment, 2014. Development wetland construction and management technology that specialized in the absorption and reduction of greenhouse gases. EW 33-08-10, Seoul, Korea, 436p.
19
National Institute of Environmental Research, 2009. Water quality and phytoplankton development in the Daecheong reservoir. CM00052298, Seoul, Korea, 75p.
20
Nazaries, L., Pan, Y., Bodrossy, L., Baggs, E. M., Millard, P., Murrell, J. C., and Singh, B. K., 2013. Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Environ. Microbiol., 79(13), 4031-4040.
10.1128/AEM.00095-1323624469PMC3697577
21
Neculita, C. M., Zagury, G. J., and Bussière, B., 2007. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: Critical review and research needs. J. Environ. Qual., 36(1), 1-16.
10.2134/jeq2006.006617215207
22
O'Green, A.T., Budd, R., Gan, J., Maynard, J.J., Parikh, S.T., and Dahlgren, R.A., 2010. Adnances in Agronomy, Vol. 108, Academic Press, Cambridge, Massachusetts, 76p.
23
Pangala, S. R., Reay, D. S., and Heal, K. V., 2010. Mitigation of methane emissions from constructed farm wetlands. Chemosphere, 78(5), 493-499.
10.1016/j.chemosphere.2009.11.04220034652
24
Park, J. H., Sonn, Y. K., Kong, M. S., Zhang, Y. S. Park, S. J., Won, J. G., Lee, S. H., Seo, D. H., Park, S. D., and Kim, J. E., 2016. Effect of by-product gypsum fertilizer on methane gas emissions and rice productivity in paddy field. Korean J. Soil Sci. Fert., 49(1), 30-35.
10.7745/KJSSF.2016.49.1.030
25
Rask, H., Schoenau, J., and Anderson, D., 2002. Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biol. Biochem., 34(4), 435-443.
10.1016/S0038-0717(01)00197-3
26
Roh, G. H. and Sa, J. H., 2015. Estimation rate and green house gas flux from wastewater treatment plants using closed chamber method. J. Korea Society of Environmental Administration, 21(1), 15-22.
27
Sha, C., Mitsch, W. J., Mander, Ü., Lu, J., Batson, J., Zhang, L., He, W., 2011. Methane emissions from freshwater riverine wetlands. Ecological Engineering, 37(1), 16-24.
10.1016/j.ecoleng.2010.07.022
28
Søvik, A. K., Augustin, J., Heikkinen, K., Huttunen, J. T., Necki, J. M., Karjalainen, S. M., Kløve, B., Liikanen, A., Mander, Ü., Puustinen, M., Teiter, S., and Wachniew, P., 2006. Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. J. Environ. Qual., 35(6), 2360-2373.
10.2134/jeq2006.003817071907
29
Teh, Y. A., Silver, W. L., Sonnentag, O., Detto, M., Kelly, M., and Baldocchi, D. D., 2011. Large greenhouse gas emissions from a temperate peatland pasture. Ecosystems, 14(2), 311-325.
10.1007/s10021-011-9411-4
30
Wang, Z. P. and Han, X. G., 2005. Diurnal variation in methane emissions in relation to plants and environmental variables in the Inner Mongolia marshes. Atmospheric Environment, 39(34), 6295-6305.
10.1016/j.atmosenv.2005.07.010
31
Whiting G. J. and Chanton, J. P., 2001. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B, 53(5), 521-528.
10.3402/tellusb.v53i5.16628
32
Wieczorek, A. S., Drake, H. L., and Kolb, S., 2011. Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol. Ecol., 77(1), 28-39.
10.1111/j.1574-6941.2011.01080.x21385187
33
Wu, H., Zhang, J., Ngo, H. H., Guo, W., and Liang, S., 2017. Evaluating the sustainability of free water surface flow constructed wetlands: Methane and nitrous oxide emissions. J. Cleaner Production, 147, 152-156.
10.1016/j.jclepro.2017.01.091
34
Younger, P. L. and Mayes, W. M., 2015. The potential use of exhausted open pit mine voids as sinks for atmospheric CO2: Insights from natural reedbeds and mine water treatment wetlands. Mine water Environ., 34(1), 112-120.
10.1007/s10230-014-0293-5
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 55
  • No :5
  • Pages :371-382
  • Received Date : 2018-09-10
  • Revised Date : 2018-10-17
  • Accepted Date : 2018-10-26