All Issue

2019 Vol.56, Issue 5 Preview Page
October 2019. pp. 416-426
Abstract


References
1 

Ahn, S., Park, C., Kim, J., and Kang, J.M., 2018. Data-driven inverse modeling with a pre-trained neural network at heterogeneous channel reservoirs. Journal of Petroleum Science and Engineering, 170, 785-796.

10.1016/j.petrol.2018.06.084
2 

Ashena, R. and Moghadasi, J., 2011. Bottom hole pressure estimation using evolved neural networks by real coded ant colony optimization and genetic algorithm. Journal of Petroleum Science and Engineering, 77, 375-385.

10.1016/j.petrol.2011.04.015
3 

Beggs, H., 1991. Production optimization using nodal analysis, Oil and Gas Climate Initiative Publications, Tulsa, p.88.

4 

Bowie, B., 2018. Machine learning applied to optimize Duvernay well performance, SPE 189823. SPE Canada Unconventional Resources Conference, Calgary, Alberta, p.1-24.

10.2118/189823-MS
5 

Carvajal, G., Maucec, M., and Cullick S., 2018. Intelligent digital oil and gas fields, Gulf professional publishing, UK, p.75-100.

10.1016/B978-0-12-804642-5.00003-729602390
6 

Ehrahimi, A. and Khamehchi, E., 2015. A robust model for computing pressure drop in vertical multiphase flow. Journal of Natural Gas Science and Engineering, 26, p.1306-1316.

10.1016/j.jngse.2015.08.036
7 

Excelsior, 2019.08.27, https://excelsior-cjh.tistory.com/185.

8 

Guyaguler, B., Horne, R., and Rogers, L., 2002. Optimization of well placement in a gulf mexico waterflooding project. SPE Reservoir Evaluation and Engineering, 5(3), 229-236.

10.2118/78266-PA
9 

Hochreiter, S. and Schmidhuber, J., 1997, Long short-term memory. Neural Computation, 9(8), 1725-1780.

10.1162/neco.1997.9.8.17359377276
10 

Jacobs, T., 2015. Automated drilling technologies showing promise. Journal of Petroleum Technology, 67(6), 50-55.

10.2118/0615-0050-JPT
11 

Jahanandish, I., Salimifard, B., and Jalalifar, H., 2011. Predicting bottomhole pressure in vertical multiphase flowing wells using artificial neural networks. Journal of Petroleum Science and Engineering, 75, 336-342.

10.1016/j.petrol.2010.11.019
12 

Jang, I., Oh, S., Kim, Y., Park, C., and Kang, H., 2018. Well-placement optimisation using sequential artificial neural networks. Energy Exploration & Exploitation, 36(3), 433-449.

10.1177/0144598717729490
13 

Kotezhekov, V., Margarit, A., Pustovskih, A., and Sitnikov, A., 2017. Development of automatic system for decline analysis, SPE 187755. SPE Russian Petroleum Technology Conference, Moscow, Russia, p.1-11.

10.2118/187755-RU
14 

Lee, K., Lim, J., Ahn, S., and Kim, J., 2018. Feature extraction using a deep learning algorithm for uncertainty quantification of channelized reservoirs. Journal of Petroleum Technology, 171, 1007-1022.

10.1016/j.petrol.2018.07.070
15 

Min, B., Park, C., Kang, J., Park, H., and Jang, I., 2011. Optimal well placement based on artificial neural network incorporating the productivity potential. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(18), 1726-1738.

10.1080/15567030903468569
16 

Osman, E., Ayoub, M., and Aggour, M., 2005. An artificial neural network model for predicting bottomhole flowing pressure in vertical multiphase flow, SPE 93632. SPE Middle East Oil and Gas Show and Conference, Kingdom of Bahrain, p.1-11.

10.2118/93632-MS
17 

Sagheer, A. and Kotb, M., 2019. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing, 323, 203-213.

10.1016/j.neucom.2018.09.082
18 

Sayyafzadeh, M., 2017. Reducing the computation time of well placement optimisation problems using self-adaptive metamodeling. Journal of Petroleum Technology, 151, 143- 158.

10.1016/j.petrol.2016.12.015
19 

Spesivtsev, P., Kharlashkin, A., and Sinkov, K., 2017. Study of the transient terrain-induced and severe slugging problems by use of the drift-flux model. SPE Journal, 22(5), 1570-1584.

10.2118/186105-PA
20 

Tensorflow, 2019.08.27, https://www.tensorflow.org.

21 

Tian, C. and Horne, R., 2019. Applying machine learning techniques to interpret flow rate, pressure and temperature data from permanent downhole gauges. SPE Reservoir Evaluation and Engineering, 22(2), 386-401.

10.2118/174034-PA
22 

Unrau, S., Torrione, P., Hibbard, M., Smith, R., Olesen, L., and Watson, J., 2017. Machine learning algorithms applied to detection of well controle events, SPE 188104. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Saudi Arabia, p.1-10.

10.2118/188104-MS
23 

Vyas, A., Datta-Gupta, A., and Mishra, S., 2017. Modeling early time rate decline in unconventional reservoirs using machine learning techniques, SPE 188231. Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, p.1-23.

10.2118/188231-MS
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 56
  • No :5
  • Pages :416-426
  • Received Date :2019. 09. 10
  • Revised Date :2019. 10. 22
  • Accepted Date : 2019. 10. 25