연구논문

터널 시공 중 막장 지질 매핑 자료를 활용한 전방 지오 모델링 기법 개발

이희욱¹⁾ · 최요순²⁾ · 박형동¹⁾*

Development of 3D Geo-modeling Techniques for an Advanced Workface Using Face Mapping Data in Tunneling

Huiuk Yi, Yosoon Choi and Hyeong-Dong Park*

Abstract : In this study, the modeling method based GIS for analyzing in-situ geo-hazards and encouraging workability in tunneling site was developed. Visualization Toolkit was used in the study for structuring modeling system of tunnel. The algorithms for estimating discontinuity relief and trend beyond the blind-end of tunneling site by considering the patterns of the input data were developed. One is the method that estimating relief trend along tunneling direction and across tunneling direction using linear modeled data. The other is the method that estimating relief trend differential along tunneling direction. This paper describes the concept and details of the software development and implecation.

Key words : Geo-modeling, Tunneling, Visualization, Geological information, Trend analysis

요 약: 본 연구에서는 시공 중에 획득가능한 지반정보를 바탕으로 터널시공 현장에서 발생할 수 있는 안전위해 요소를 합리적으로 분석하여 작업의 안정성을 높이고 시공성을 증대시킬 수 있는 GIS 기반 터널 모델링 기법을 개발하였다. 새로운 기법이 적용되는 터널시공현장의 모델링 체계를 구축하기 위하여 VTK(Visualization ToolKit) 를 사용하였다. 터널 막장에서 관측되는 불연속면의 위상을 고려하여 그 변화의 추세를 토대로 굴진방향 전방의 불연속면을 예측하는 알고리즘을 개발하였다. 터널 시공의 특성을 감안하여 선형으로 확보되는 정보를 바탕으로 자료를 격자형 그물구조로 모사하여 터널굴진 방향과 그에 수직인 방향에 대한 경향성을 분석하는 기법이 개발되 었다. 또한 굴진방향에 대한 불연속면 위상이 변화하는 크기의 경향성을 분석하여 막장 근전방을 예측하는 기법 이 개발되었다. 본 논문에서는 개발된 소프트웨어의 주요 기능과 국내 ○○ 터널 시공 현장에 대한 적용하였다.

주요어 : 지오 모델링, 터널시공, 시각화, 지반정보, 추세분석

서 론

설계 단계에서 예측한 지반정보와 시공 중에 확인되는 지반정보의 불일치 문제는 터널 시공 현장의 공기를 지 연시키고 작업 안전성을 저하시키는 주요한 원인으로 보 고되고 있다(김성중 등, 2008). 실제로 국내 ○○비축기 지의 터널 시공 현장에서는 74.2%의 과업구간에서 설계 시 예측했던 지반정보와 실제 지반조건이 불일치하는 것 으로 조사되었으며, ○○터널 시공 현장에서는 설계시

*Corresponding Author(박형동)

예측하지 못한 대규모 단층 파쇄대의 출현으로 상부지반 이 붕괴되어 공기가 지연되는 사고가 발생하였다(건설 교통부, 2007). 호주 시드니 ○○터널에서도 설계 단계 에서 정확히 예측하지 못한 단층대 교차지점에서 터널붕 괴 사고가 발생하였다(The Australian, Nov 03, 2005). 단층, 파쇄대, 연약 암반 등 설계 단계에서 예측하지 못한 지질학적 공정 위해요소들을 터널 시공 중에 신속 하게 발견하고 분석하기 위해서는 터널 시공 중에 매 막 장단위로 획득할 수 있는 지질매핑, 천공에너지, 막장이 미지 등의 시공 중 지반조사 자료들을 활용할 필요가 있 다. 시공 중 지반조사 자료는 현장에서 획득 가능한 자료 임과 동시에 막장 근 전방 영역의 지반조건을 설명할 수 있는 가장 직접적인 자료이기 때문이다. 본 연구에서는 터널 시공 중 획득 가능한 다양한 지반조사 자료 가운데 막장의 지질 매핑 자료를 활용하여 막장 근 전방 영역의 단층, 파쇄대의 출현과 변화패턴을 분석할 수 있는 3차

²⁰¹⁰년 7월 6일 접수, 2010년 10월 6일 심사완료

²⁰¹¹년 2월 10일 게재확정

¹⁾ 서울대학교 공과대학 에너지시스템공학부

²⁾ 부경대학교 에너지자원공학과

E-mail; hpark@snu.ac.kr

Address; Department of Energy Systems Engineering, Seoul National University

원 지오 모델링 기술을 개발하고자 한다.

3차원 지오 모델링 기술은 구조지질학(서백수 등, 2005; Pouliot, 2008; Wu and Xu, 2003; Wu and Xu, 2005), 채광공학(de Kemp, 2000), 석유공학(곽상환과 이두성, 2001; Meyer et al., 2002), 터널 모델링(이창호 등, 1996) 등 다양한 분야에서 활발히 연구되어 왔다. 터널공학 분 야에서도 설계 단계에서 획득한 지반조사 자료들을 효과 적으로 가시화하기 위한 연구사례들이 보고되었으나(마 상준과 서경원, 2002; 홍성완 등, 2002), 터널 시공 중에 획득되는 자료들을 활용한 3차원 지오 모델링 기술에 대 한 연구는 활발하게 진행되지 못한 실정이다. 특히, 지반 조사 자료들로부터 터널 구간의 3차원 지반 물성치를 추 정하기 위해 사용된 기존의 지구통계학적 기법들은 다음 과 같은 한계점들을 가지고 있다.

- 티널 경로 및 작업 환경의 특성상 알고 있는 영역에 비해 추정할 영역이 더 넓다.
- 지질정보를 알고 있는 영역의 형태가 면이 아닌 선 형이다.
- 분석에 사용된 수치의 범위를 넘는 영역은 그 정확 도가 현저히 감소한다.

본 연구에서는 앞서 언급된 한계점들을 극복하기 위해 터 널 시공 현장의 특성을 감안하여 선형으로 조사되는 지반정 보의 변화 추세를 반영할 수 있는 3차원 지오 모델링 기법 을 개발하고자 한다. 터널 시공 중 획득되는 막장 지질 매핑 자료를 이용하여 막장 근 전방 영역에서 나타날 수 있는 지 질학적 공정위해요소를 유사 실시간으로 분석할 수 있는 소 프트웨어를 개발하는 것이 목적이다. 본 논문에서는 개발된 소프트웨어와 3차원 지오 모델링 기법의 원리를 설명한 후, 국내 ○○ 터널에 대한 현장적용 결과를 제시한다.

RESTIS-GM 소프트웨어의 개요

RESTIS-GM 소프트웨어는 터널 시공 현장의 DEM (Digital Elevation Models), 시추조사자료, 물리탐사자료, 불연속면, 터널 경로, 막장면 매핑(Mapping)자료 등의 3차 원 가시화를 위해 개발되었다(김성중 등, 2008). Fig. 1은 RESTIS-GM 소프트웨어의 주요 기능들을 보여준다. 사용 자가 작업창에서 자유롭게 시점을 변경하고, 축과 조명의 방향 변경을 할 수 있도록 개발되었다. 소프트웨어가 제공 하는 주요 분석 기능으로는 등방성 및 이방성을 고려할 수 있는 정규 크리깅 기능과 다변량 지시 크리깅 기능이 있으 며, 이러한 지구통계학적 기법을 이용하여 터널 구간의 암 반 물성을 3차원 특성화할 수 있다. 또한 시공 중에 발견 된 불연속면의 조사정보를 이용하여 해당 불연속면으로 인한 연약대를 추정하고, 연약대와 터널의 교차지점을 분 석할 수 있는 기능을 제공한다(Choi et al., 2009).

RESTIS-GM 소프트웨어는 오픈소스 라이브러리인 Visualization ToolKit(VTK)를 기반으로 개발되었다. VTK는 Visual Basic, C++, Python 등과 호환이 가능하여 플랫 폼이 유동적이라는 장점이 있다. 본 연구에서는 VTK가

Fig. 1. Overview of RESTIS-GM software.

Fig. 2. Flow chart of the VTK model for 3D visualization of gelogical data.

제공하는 모듈 가운데 터널 시공현장을 3차원 가시화하 는 데에 효과적으로 적용될 수 있는 것들을 선별한 후, 모듈간의 계층관계를 고려한 3차원 가시화 기능을 Fig. 2와 같이 설계하였다. 본 연구에서는 Visual Basic.NET 2005를 이용하여 VTK 기반의 3차원 가시화 기능을 RESTIS-GM 소프트웨어에 구현하였다.

막장 지질 매핑 자료를 활용한 근 전방 지오 모델링 기법 개발

본 연구에서는 선형으로 확보되는 지반정보의 추세를 반영하여 터널 근 전방의 공정위해요소를 예측할 수 있 는 두 가지 방법을 개발하였다.

그물망 모사 기법(mesh modeling method, 3M)

그물망 모사기법은 기존의 자료를 x, y방향의 mesh로 모사하여 그 경향을 수식으로 나타내는 방법이다. 이미 알고 있는 점들에 대하여 터널 굴착 진행방향(x방향)과 그에 수직한 방향(y방향)에 대한 경향성을 수식으로 표 현하여 그 수식의 연장선상에서 미지의 값을 계산할 수 있다(Fig. 3). 구체적으로는 이미 알고 있는 막장의 지질 정보를 격자형태의 자료구조로 정렬한 후 그물망 구조로 자료를 모사하고, y좌표에 따른 x함수 A_y(x),x좌표에 따 른 y함수 B_x(y)를 계산한다(식 (1)).

$$A_{y}(x) = \sum_{i} a_{i}x^{i} \quad (i=0,n-1) B_{x}(y) = \sum_{j} b_{j}y^{j} \quad (j=0,m-1)$$
(1)

여기서 n은 y좌표의 자료 수, m은 x좌표의 자료 수를 의미한다. 특정 x, y 좌표의 z값은 하나로 정해져 있으므 로 A_y(x)=B_x(y)의 조건이 성립하도록 계수를 설정한다.

Fig. 3. Principle of the Mesh Modeling Method (3M) technique.

이와 같이 기존의 자료를 구조화하여 모사하면, 자료의 전체적인 방향성은 여러 개의 수식으로 표현될 수 있다. 터널 굴착 공정은 진행방향이 정해져 있기 때문에 모든 방향에 대하여 자료를 분석할 경우 오히려 분석의 정확도를 감소시킨다. 따라서 비교적 상관성이 높다고 여겨지는 막장 전방에 가까운 정보들을 토대로 분석을 수행할 필요가 있다. 이 때, 최전방 n번째 막장의 i번째 y좌표 (yi)를 가진 한 자 료에 대하여, 전체 셀을 고려하지 않고 가장 가까운 9개의 셀의 정보(n-2번 째 막장, n-1번 째 막장, n번 째 막장 내 y_{i-1},y_i,y_{i+1}좌표의 정보)를 사용하며, 터널 진행방향으로 수식을 단순화하여 x에 대한 3차식 A'y_i(x)와 수직한 방향 으로 y에 대한 2차식 B'x(y)(x=n-3,n)를 가정한다. 즉, (i, j) 한 점의 수치를 추정하기 위하여 4개의 수식(A'y_i(x), B'_{n-3}(y), B'_{n-1}(y))과 13개의 경계 조건이 사용된다.

A'y_i(x)는 굴진방향에 대한 3차식으로 4개의 경계조건 을 요구하며, 이는 이미 알고 있는 3개 자료의 수치와 최 종 막장에서의 기울기가 주어진 자료를 이용하여 값을 적 용한다. B'n-3(y), B'n-2(y), B'n-1(y)3개의 수식은 각각 3개 씩 미지계수를 가지는데 각 막장의 y_{i-1},y_i,y_{i+1}자료의 수치 로 그 계수가 계산된다. 이를 토대로 b₀,b₁,b₂각각에 대한 x방향으로의 추세를 계산하여 B'n(y)의 계수 3개를 결정 할 수 있다. 터널 전방의 각 노드는 A'y(n)에 의해서 일단 추정 값을 부여받고 그 값을 y_{i-1},y_i,y_{i+1}각각 가지는 B'n(y) 에 대입하여, 최종적인 분석 값은 식 (2)와 같이 산정한다.

 $pA'_{yi}(n)+rB'_{n,(yi-1)}(y_i)+rB'_{n,(yi)}(y_i)+rB'_{n,(yi+1)}(y_i)$ (2)

where p=0.5, r=0.5/e

여기서 e는 유효한 B'n(y)의 개수로, 가장자리에 있는 자료의 경우 yi에 대하여 yi-1,yi+1가 존재하지 않을 수 있 기 때문에 노드의 위치에 따라 e에는 2 또는 3의 값이 부여된다. p, r 은 A', B' 식의 가중치이다. p가 r보다 더 큰 것은 주어진 자료의 분포 특성에 의하여 대부분의 자 료가 굴진방향으로 분포하므로, 굴진방향에 대한 경향성 을 대표하는 A'_y(x)가 B'_x(y)보다 자료의 대표성을 나타 내는 현상을 반영할 수 있다.

추세 모사 기법(trend modeling method, T2M)

추세 모사 기법은 3M의 과정을 단순화시켜 작업속도 를 높이기 위해 자료의 굴착방향에 대한 경향성만을 고 려하고 굴착방향에 수직인 방향에 대한 경향은 고려하지 않는다(Fig. 4). 이를 통해 기존의 가중치를 사용한 내삽

Fig. 4. Principle of the Trend Modeling Method (T2M) technique.

법이 입력 자료의 분포 범위에서 멀어질수록 예측치의 오차가 커지는 한계를 극복할 수 있다. 인접한 수치간의 차이와 비슷한 형태의 수식을 찾기 위해 최소제곱법을 이용하여 R²값을 비교하는 것으로 최적의 수식을 결정 하였다. 최종적으로 분석하고자 하는 영역의 좌표에 부 합하는 수식을 사용하여 값을 산출할 수 있다. 이러한 접 근방법은 입력 자료가 가지는 주요한 경향성만을 고려하 므로 3M보다 분석과정이 간단하기 때문에 분석에 소요 되는 시간을 크게 단축할 수 있다.

현장적용

적용방법

본 연구에서 개발된 그물망 모사 기법과 추세 모사 기 법의 효용성을 평가하기 위하여 국내 ○○ 터널 시공 현 장에 대한 적용을 수행하였다(Fig. 5). 이 현장에서는 Fig. 5 내 (2)번 터널의 x=140,200 지점에서 불연속면이 교차 하고 있다. 본 연구에서는 (2)번 터널의 막장 매핑자료에 서 관찰되는 불연속면의 정보를 토대로 막장 근 전방의 불연속면 변화 추세를 예측하고자 한다.

분석은 굴진 공정에 따른 가상시나리오에 따라 수행되 었다. 현장좌표계에서 x축의 음의 방향으로 굴착 작업을 진행하면서 터널 구간과 불연속면을 만나는 것으로 설정 하였다. 즉, 이용한 자료의 -x방향은 터널의 굴착방향이 고 y축 방향은 막장과 평행한 방향이다. Fig. 5의 (2)번 터

Fig. 5. 3D visualization of the study area.

Fig. 6. Scenario of 3D geo-modeling at the study area. (a) In situation x=170. (b) In situation x=160. (c) In situation x=150. (d) In situation location where tunneling completed.

널은 x=200 구간에서 처음 불연속면과 교차하여 x=140 구간까지 계속적으로 이어진다(Fig. 6). x축 방향으로는 1 m 간격으로 자료가 있으므로, 총 61개 막장에 대한 정 보가 있다. 각 막장은 등간격의 12~15개 점(point)형 자 료구조로 구성되어 있다. 이 중 x=170, 160, 150 까지 터널 굴진이 진행된 3가지 상황을 가정하여 해당 시점까 지 확보된 불연속면 위상 매핑 자료에 정규 크리깅 기법 (ordinary kriging), 그물망 모사 기법, 추세 모사 기법을 각각 적용하여 1 m 간격의 전방 5막장에 대한 지오 모 델링을 수행하였다. 특정 방향으로 발달한 단층의 분포 특성을 예측하기 위해서는 일반 크리깅 기법(universal kriging)을 대조군으로 이용하는 것이 더 나을 수 있으 나, 이것은 자료의 경향성을 결정하는 단계에서 사용자 의 주관적 판단이 개입될 수 있고 그에 따라 결과가 달 라질 수 있다. 이를 피하기 위하여 정규 크리깅 기법을 대조군으로 설정하였다. 예측된 막장면의 지질 조건과 현장에서 실제 확인된 결과를 비교하여 오차 분석을 수 행하였다. 이때에 오차는 각 (x,y) 좌표에 대한 불연속면 의 실측치(R_(x,y))와 추정치(E_(x,y))의 차를 계산하였다.

$$(\mathfrak{L}\mathfrak{A}): \Delta_{(\mathbf{x},\mathbf{y})} = \mathbf{R}_{(\mathbf{x},\mathbf{y})} - \mathbf{E}_{(\mathbf{x},\mathbf{y})}$$
(3)

산출된 모든 (x,y) 좌표의 오차에 대하여 근평균제곱 (Root Mean Square, RMS), 최대값, 최소값을 계산하여 분석을 수행하였다. 산술평균은 오차의 부호들에 따라 값 이 상쇄되어 오차의 크기를 충분히 대표할 수 없다고 판 단되어 산술평균 대신 근평균제곱을 대푯값으로 사용하였다. 최대값, 최소값으로 오차의 범위를 분석에 고려한 것은 오차의 범위가 작을수록 일괄적인 보정(e.g. 차감계 산(offset))의 적용이 용이하다고 판단되기 때문이다.

결과 및 토의

Table 1은 근 전방 막장 불연속면의 분석 결과를 각 (x,y)좌표에 대하여 적용 기법별로 오차를 계산한 것이다. 오차는 전체적으로 음수가 양수보다 약 2배정도 많이 도 출되었다(양수 : 167개, 음수 : 385개). 특히 정규 크리깅 과, 3M 기법에서는 양수 대 음수의 비율이 2 : 7 정도로 도출되었는데, 이는 대체로 분석으로 인한 추정값이 실측 치보다 크게 추정되었다는 것을 의미한다. 반면 T2M 기 법에서는 87 : 97로 거의 대등한 결과를 얻었다. 한 가지 주목할 점은 정규 크리깅 기법은 관심영역의 경계부분에 서 예측 결과의 정확도가 현저히 떨어진다는 것이다(Fig. 7). 이는 정규 크리깅 기법이 입력 값과 분석 위치의 거리 에 따라 가중치를 결정하는 성질 때문이다. 일반적으로 크리깅과 같은 내삽법은 입력한 자료의 범위 외부영역에 서 정확도가 현저하게 떨어지고, 분석 결과는 입력한 자 료의 최대값, 최소값 범위를 벗어날 수 없다는 한계가 있 다(Dubrule, 1982). Fig. 7은 그 대표적인 예를 보여준다.

Table 2와 Fig. 8은 막장별로 분류하여 분석 결과의 오 차의 근평균제곱, 최대값, 최소값을 비교한 결과이다. 5 개의 막장에서 공통적으로 입력 자료로부터 막장이 멀어 질수록 오차와 오차의 범위가 증가하는 것을 확인할 수

6

Table 1. Geo-modeling results from ordinary kriging, Mesh Modeling Method (3M) and Trend Modeling Method (T2M) : errors in each (x,y) positions

$ \begin{bmatrix} 125 & 2216 & -0289 & 0017 \\ 126 & 0.071 & -0289 & 0.017 \\ 127 & 0.477 & -0289 & 0.017 \\ 128 & 0.033 & -0.088 & 0.764 \\ 130 & 0.055 & -0289 & 0.017 \\ 131 & 0.055 & -0289 & 0.017 \\ 132 & 0.055 & -0289 & 0.017 \\ 132 & 0.055 & -0289 & 0.017 \\ 133 & -0.055 & -0289 & 0.017 \\ 133 & -0.055 & -0289 & 0.017 \\ 134 & -0.095 & -0289 & 0.017 \\ 134 & -0.095 & -0289 & 0.017 \\ 134 & -0.095 & -0289 & 0.017 \\ 134 & -0.095 & -0289 & 0.017 \\ 134 & -0.095 & -0289 & 0.017 \\ 134 & -0.095 & -0289 & 0.017 \\ 135 & -0.055 & -0289 & 0.017 \\ 135 & -0.055 & -0289 & 0.017 \\ 135 & -0.055 & -0289 & 0.017 \\ 136 & -0.055 & -0289 & 0.017 \\ 136 & -0.055 & -0289 & 0.017 \\ 136 & -0.055 & -0289 & 0.017 \\ 136 & -0.055 & -0289 & 0.017 \\ 136 & -0.055 & -0289 & 0.017 \\ 136 & -0.055 & -0289 & 0.017 \\ 136 & -0.055 & -0289 & 0.017 \\ 136 & -0.058 & -0289 & 0.017 \\ 126 & 0.055 & -0289 & 0.017 \\ 136 & -0.088 & 0.344 & -0.553 \\ 138 & -0.048 & -0.144 & -0.392 & -0.314 \\ 126 & -0.054 & -0.890 & -0.115 \\ 138 & -0.248 & -0.871 & -0.394 & -0.354 \\ 130 & -0.211 & -0.891 & -0.115 \\ 130 & -0.211 & -0.891 & -0.115 \\ 131 & -0.211 & -0.891 & -0.115 \\ 131 & -0.211 & -0.891 & -0.115 \\ 131 & -0.211 & -0.891 & -0.115 \\ 131 & -0.211 & -0.891 & -0.115 \\ 131 & -0.211 & -0.891 & -0.115 \\ 132 & -0.218 & -0.871 & -0.144 \\ 135 & -2.248 & -0.563 & -0.276 & -0.560 \\ 131 & -0.539 & -0.964 & -0.564 \\ 132 & -0.599 & -0.615 & -0.566 \\ 131 & -0.539 & -0.964 & -0.566 \\ 132 & -0.599 & -0.656 & -0.570 \\ 133 & -0.539 & -0.964 & -0.566 \\ 134 & -0.489 & -0.571 & -0.690 \\ 135 & -1.58 & -0.566 & -0.570 \\ 136 & -2.598 & -0.857 & -0.144 \\ 137 & -2.588 & -0.144 & -0.566 & -0.570 \\ 137 & -0.589 & -0.565 & -0.570 \\ 138 & -0.666 & -0.570 & -0.570 \\ 138 & -0.666 & -0.570 & -0.570 \\ 138 & -0.676 & -0.560 & -0.570 \\ 138 & -0.676 & -0.560 & -0.570 \\ 138 & -0.588 & -0.144 & -0.587 & -0.588 & -0.144 \\ 135 & -2.688 & -0.487 & -0.568 & -0.570 \\ 136 & -2.598 & -0.857 & -0.588 & -0.144 \\ 137 & -0.288 & -0.424 & -0.557 & -0.560 \\ 131 & -0.598 & -0.565 & -0.566 & -0.570 \\ 131 & -0.598 & -0.565 & -0.570 & -0.570$	X	v	ΔΟΚ	Δ 3Μ	Δ Τ2Μ	х	v	ΔΟΚ	$\Delta 3M$	Δ Τ2Μ	х	v	ΔOK	$\Delta 3M$	Δ Τ2Μ
120 0.971 -0.289 0.017 129 0.033 -0.148 0.794 131 0.145 0.238 0.044 0.181 149 130 -0.055 0.289 0.017 132 -0.153 -0.028 0.734 133 -0.118 -0.056 0.280 0.017 131 -0.165 0.289 0.017 132 -0.171 0.093 0.674 135 -0.088 0.141 0.326 0.280 0.016 136 -0.073 0.044 0.480 0.390 0.141 0.326 0.0280 0.016 136 -0.073 0.044 0.480 0.531 137 -0.046 0.181 0.590 0.280 0.800 0.141 0.326 0.280 0.800 0.114 138 -0.148 0.040 0.571 0.328 0.800 0.114 137 0.344 0.490 0.330 0.317 0.340 0.313 0.317 0.400 0.320 0.300 0.315 116 0.330 0		125	2.216	-0.289	0.017		127	2.213	-0.208	0.824		130	2.330	0.605	0.073
127 0.447 -0.259 0.017 129 -0054 -0.289 0.017 130 -0155 -0.289 0.017 131 -0055 -0.289 0.017 132 -0.187 -0.056 -0.289 0.017 133 -0.055 -0.289 0.017 -0.064 0.043 108 133 -0.055 -0.289 0.017 -0.35 0.018 0.13 -0.064 0.074 0.35 125 -0.57 -0.289 0.017 -135 -0.040 0.334 0.532 139 -0.046 0.490 0.414 -0.99 0.557 139 -0.036 0.050 0.502 0.571 130 -0.036 0.030 0.521 140 -0.572 0.334 0.523 140 -0.572 0.334 0.313 0.660 0.490 0.115 130 0.490 0.115 130 0.490 0.115 130 0.490 0.115 131 0.444		126	0.971	-0.289	0.017		128	0.833	-0.148	0 794		131	0.845	0.571	0.104
128 0.055 0.258 0.017 130 0.015 0.258 0.038 0.0		120	0.447	-0.289	0.017		120	0.353	-0.088	0.754		132	0.385	0.371	0.181
$ \begin{matrix} 149 \\ 150 \\ 150 \\ 160 \\ 1$	149	127	0.054	0.289	0.017		120	0.555	0.028	0.704		132	0.111	0.404	0.131
$ \begin{matrix} 149 \\ 130 \\ 131 \\ 149 \\ 131 \\ 130 \\ 131 \\ 130 \\ 131 \\ 130 \\ 131 \\ 130 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 121 \\ 131 \\ 1$		120	-0.034	-0.289	0.017		121	-0.155	-0.028	0.734		124	-0.111	0.330	0.234
147 30 -0.053 -0.252 0.017 159 132 -0.017 159 133 -0.017 159 133 -0.017 151 150 -0.017 151 -0.012 -0.012 0.017 151 -0.012 0.017 153 -0.012 0.017 153 -0.012 0.016 153 -0.012 0.016 153 -0.012 0.016 153 -0.014 0.016 153 -0.014 0.016 153 -0.014 0.014 153 0.014 0.014 153 0.014 0.014 153 153 -0.014 0.014 153 153 0.016 153 0.014 153 153 0.016 153 153 153 0.016 153		129	-0.055	-0.289	0.017		122	-0.102	0.032	0.704		125	-0.098	0.249	0.288
121 -0.053 0.228 0.017 133 -0.181 0.133 0.043 0.134 0.0133 0.013 0.034 0.395 133 -0.055 0.228 0.017 135 -0.199 0.214 0.533 137 -0.061 -0.074 0.450 125 -0.574 0.289 0.017 137 -0.746 0.394 0.523 126 0.833 0.909 0.014 138 -0.280 0.331 126 0.843 0.890 -0.114 138 -1.242 0.544 0.403 141 -1.125 -0.030 0.065 128 0.289 0.917 138 -0.540 0.043 130 133 130 133 130 133 130 133 130 133 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 131 <t< td=""><td>130</td><td>-0.055</td><td>-0.289</td><td>0.017</td><td>150</td><td>132</td><td>-0.1/1</td><td>0.095</td><td>0.074</td><td>160</td><td>135</td><td>-0.080</td><td>0.141</td><td>0.342</td></t<>		130	-0.055	-0.289	0.017	150	132	-0.1/1	0.095	0.074	160	135	-0.080	0.141	0.342
124 -0.055 0.289 0.017 135 -0.019 0.213 0.013 134 -0.055 0.289 0.016 135 -0.019 0.214 0.083 126 0.574 0.289 0.016 137 -0.746 0.344 0.523 127 0.863 0.890 0.114 138 -2.242 0.514 0.483 128 0.289 0.890 0.114 127 3.033 -1.317 0.493 129 0.211 0.891 0.115 138 -0.0495 0.503 138 -0.211 0.890 0.115 131 0.280 0.494 0.590 139 -0.211 0.890 0.115 133 -0.880 0.650 132 -1.164 0.222 0.444 130 -0.218 0.897 0.213 0.561 133 -0.580 0.562 134 -0.890 0.562 134 -0.890 0.570 134 136		131	-0.055	-0.289	0.017	159	133	-0.181	0.155	0.643	109	130	-0.073	0.034	0.396
123 -0.055 0.228 0.017 135 -0.199 0.274 0.283 138 -0.048 -0.181 0.394 124 -0.055 -0.289 0.017 137 -0.746 0.394 0.253 140 -0.252 0.016 -0.289 0.551 125 -0.074 0.394 0.253 140 -0.252 140 -0.252 0.011 139 -0.148 0.011 128 1.54 -0.141 129 -0.264 0.493 141 -1.125 -0.030 0.665 128 0.289 -0.011 129 0.201 -0.256 0.503 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 1		132	-0.055	-0.289	0.017		134	-0.190	0.213	0.613		13/	-0.061	-0.074	0.430
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		133	-0.055	-0.289	0.017		135	-0.199	0.274	0.583		138	-0.048	-0.181	0.504
135 40.54 40.529 0.017 137 -0.476 0.394 0.523 144 -1.22 40.572 <		134	-0.055	-0.289	0.016		136	-0.208	0.334	0.553		139	-0.036	-0.289	0.557
125 3.7.7 -0.891 -0.114 -1.248 -0.493 -1.125 -0.50 0.066 127 0.863 0.800 0.114 127 3.033 -1.317 0.440 .0433 142 -2.321 0.611 0.719 128 0.289 0.289 0.900 0.114 128 1.544 -1.37 0.430 .0333 0.775 0.512 128 0.211 0.891 -0.115 130 0.318 -0.750 .012 133 -0.618 0.766 0.660 133 0.211 0.890 -0.115 130 0.384 0.775 0.512 134 -1.064 -0.670 0.660 133 0.218 0.897 -0.114 135 136 0.384 0.770 138 1.067 1.888 0.122 126 2.284 0.6563 138 -2.847 0.444 0.352 0.561 138 -2.850 0.444 -2.300 2.310 0.309 <t< td=""><td>135</td><td>-0.5/4</td><td>-0.289</td><td>0.017</td><td></td><td>13/</td><td>-0./46</td><td>0.394</td><td>0.523</td><td></td><td>140</td><td>-0.572</td><td>-0.396</td><td>0.611</td></t<>		135	-0.5/4	-0.289	0.017		13/	-0./46	0.394	0.523		140	-0.572	-0.396	0.611
126 1.84 0.890 0.114 139 0.2442 0.814 0.463 142 0.243 0.814 0.463 130 2.137 0.410 0.983 128 0.280 -0.800 -0.114 128 1.544 -1.137 0.443 130 3.137 0.470 -0.983 130 -0.211 -0.801 -0.115 130 -0.338 -0.75 0.512 133 -0.668 -0.762 -0.660 132 -0.210 -0.950 -0.015 131 -0.844 -0.590 -0.512 133 -0.658 -0.572 0.561 136 -1.020 -0.155 134 -0.869 -0.563 138 -1.893 0.489 0.579 126 -2.98 -1.963 -0.564 127 1.466 -2.70 0.299 -1.312 -5.484 0.579 127 1.648 -1.962 -0.564 127 -1.664 -2.70 0.299 130 -2.118 -2.313 <td rowspan="5"></td> <td>125</td> <td>3.777</td> <td>-0.891</td> <td>-0.114</td> <td></td> <td>138</td> <td>-1.245</td> <td>0.454</td> <td>0.493</td> <td></td> <td>141</td> <td>-1.125</td> <td>-0.503</td> <td>0.665</td>		125	3.777	-0.891	-0.114		138	-1.245	0.454	0.493		141	-1.125	-0.503	0.665
$ \begin{bmatrix} 127 & 0.863 & 40.890 & 0.114 \\ 128 & 0.289 & 0.289 & 0.890 & 0.114 \\ 129 & 0.211 & 0.891 & 0.115 \\ 131 & 0.211 & 0.891 & 0.115 \\ 132 & 0.211 & 0.891 & 0.115 \\ 133 & 0.211 & 0.890 & 0.115 \\ 133 & 0.211 & 0.890 & 0.115 \\ 133 & 0.211 & 0.890 & 0.115 \\ 133 & 0.211 & 0.890 & 0.115 \\ 133 & 0.211 & 0.890 & 0.115 \\ 135 & -1.154 & 0.890 & 0.115 \\ 135 & -1.154 & 0.890 & 0.115 \\ 135 & -1.154 & 0.890 & 0.115 \\ 135 & -1.154 & 0.890 & 0.115 \\ 135 & -1.154 & 0.890 & 0.115 \\ 135 & -1.154 & 0.890 & 0.115 \\ 135 & -1.154 & 0.890 & 0.115 \\ 135 & -1.154 & 0.890 & 0.115 \\ 135 & -1.154 & 0.890 & 0.115 \\ 135 & -0.678 & 0.129 & 0.560 \\ 137 & -1.084 & -1.962 & 0.563 \\ 126 & 2.2028 & -1.963 & 0.564 \\ 127 & 1.648 & -1.962 & -0.563 \\ 139 & -0.594 & -0.564 \\ 128 & 0.517 & -1.893 & 0.489 & 0.570 \\ 128 & 0.211 & -1.963 & 0.564 \\ 128 & 0.564 & -1.878 & 0.129 & 0.568 \\ 134 & -1.220 & -1.962 & -0.564 \\ 135 & -0.564 & -1.878 & 0.129 & 0.588 \\ 144 & -1.220 & -1.962 & -0.564 \\ 132 & -0.539 & -1.963 & -0.564 \\ 132 & -0.539 & -1.963 & -0.564 \\ 132 & -0.539 & -1.963 & -0.564 \\ 132 & -0.539 & -1.963 & -0.564 \\ 134 & -1.220 & -1.962 & -0.566 \\ 134 & -1.220 & -1.962 & -0.566 \\ 134 & -1.220 & -1.962 & -0.566 \\ 134 & -1.220 & -1.962 & -0.566 \\ 134 & -1.220 & -1.962 & -0.566 \\ 134 & -1.671 & -1.888 & -0.107 \\ 126 & -0.597 & -0.663 \\ 134 & -0.861 & -0.371 & -1.37 \\ 126 & -0.481 & -0.330 & -1.071 \\ 127 & -1.924 & -0.320 & -1.071 \\ 137 & -1.481 & -0.564 \\ 132 & -0.681 & -1.330 & -1.071 \\ 128 & -0.881 & -3.330 & -1.073 \\ 128 & -0.881 & -3.330 & -1.073 \\ 128 & -0.881 & -3.330 & -1.073 \\ 129 & -0.881 & -3.330 & -1.073 \\ 127 & -1.984 & -0.566 & -1.327 \\ 136 & -2.484 & -0.486 & -0.565 \\ 137 & -1.484 & -0.496 & -1.692 \\ 136 & -2.484 & -0.486 & -0.552 & -1.087 \\ 136 & -2.484 & -0.486 & -0.552 & -1.087 \\ 137 & -2.483 & -3.296 & -1.572 \\ 138 & -2.484 & -0.486 & -0.552 & -1.087 \\ 136 & -2.484 & -0.486 & -0.552 & -1.087 \\ 136 & -2.484 & -0.486 & -0.552 & -1.087 \\ 137 & -1.28 & -0.074 & -1.690 \\ 138 & -0.486 & -0.762 & -1.690 \\ 138 & -0.486 & -0.767 & -1.288 & -0.772$		126	1.843	-0.890	-0.114		139	-2.442	0.514	0.463		142	-2.321	-0.611	0.719
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		127	0.863	-0.890	-0.114		127	3.033	-1.317	0.540		130	3.137	0.470	-0.983
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		128	0.289	-0.890	-0.114		128	1.544	-1.137	0.493		131	1.239	0.369	-0.922
$ \begin{matrix} 148 \\ \hline 130 0.211 0.891 0.115 \\ \hline 132 0.211 0.891 0.115 \\ \hline 132 0.211 0.891 0.115 \\ \hline 134 0.644 0.890 0.115 \\ \hline 135 0.211 0.890 0.115 \\ \hline 136 2.058 0.887 0.114 \\ \hline 136 0.599 1.963 0.564 \\ \hline 127 1.648 1.962 0.564 \\ \hline 127 1.648 1.962 0.564 \\ \hline 128 2.250 1.909 0.881 \\ \hline 131 0.539 1.963 0.564 \\ \hline 129 0.539 1.963 0.564 \\ \hline 131 0.539 1.963 0.564 \\ \hline 131 0.539 1.963 0.564 \\ \hline 131 0.81 0.826 1.073 \\ \hline 132 0.539 1.963 0.564 \\ \hline 134 0.212 1.68 1.099 \\ \hline 133 0.258 1.963 0.564 \\ \hline 134 0.212 1.68 1.099 \\ \hline 135 2.268 1.962 0.566 \\ \hline 134 0.81 0.81 0.826 1.073 \\ \hline 135 2.268 1.962 0.566 \\ \hline 134 0.81 0.826 1.073 \\ \hline 135 2.268 1.962 0.566 \\ \hline 134 0.81 0.826 1.073 \\ \hline 136 2.367 1.977 0.563 \\ \hline 136 0.381 0.330 1.073 \\ \hline 126 0.381 0.330 1.073 \\ \hline 126 0.381 0.330 1.073 \\ \hline 126 0.488 0.330 1.073 \\ \hline 126 0.488 0.330 1.073 \\ \hline 126 0.488 0.330 1.073 \\ \hline 136 0.384 0.385 0.100 \\ \hline 136 0.384 0.385 0.139 \\ \hline 137 4.246 5.388 0.986 \\ 0.326 1.37 4.311 4.549 1.572 \\ \hline 136 0.472 4.589 0.387 \\ \hline 137 4.246 5.388 0.986 0.326 \\ \hline 134 4.496 4.515 0.697 \\ \hline 134 0.496 1.697 \\ \hline 135 0.474 0.488 0.330 1.073 \\ \hline 136 0.472 4.493 0.465 1.37 \\ \hline 136 0.474 1.586 0.388 0.388 \\ \hline 131 0.466 0.349 0.186 \\ \hline 136 0.474 0.486 0.346 0.349 0.187 \\ \hline 137 4.246 5.388 0.986 0.326 0.388 0.388 0.316 0.34 0.496 0.388 0.388 0.316$		129	-0.211	-0.891	-0.115		129	0.201	-0.956	0.503		132	-0.109	0.046	-0.767
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	148	130	-0.211	-0.891	-0.115		130	-0.338	-0.775	0.512		133	-0.658	-0.276	-0.660
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.0	131	-0.211	-0.890	-0.115		131	-0.841	-0.596	0.522		134	-1.132	-0.598	-0.552
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		132	-0.211	-0.891	-0.115		132	-0.850	-0.414	0.532		135	-1.116	-0.922	-0.445
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		133	-0.211	-0.890	-0.115	158	8 133	-0.859	-0.233	0.541	168	136	-1.100	-1.244	-0.337
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		134	-0.644	-0.890	-0.115		134	-0.869	-0.052	0.550		137	-1.084	-1.567	-0.230
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		135	-1.154	-0.890	-0.115		135	-0.878	0.129	0.560		138	-1.067	-1.888	-0.122
$ \begin{matrix} 125 & 4.589 & -1.964 & -0.563 \\ 127 & 1.648 & -1.962 & -0.563 \\ 128 & -2.814 & -0.576 \\ 129 & -0.539 & -1.964 & -0.564 \\ 120 & -0.539 & -1.964 & -0.564 \\ 120 & -0.539 & -1.964 & -0.564 \\ 120 & -0.539 & -1.963 & -0.565 \\ 132 & -0.539 & -1.963 & -0.565 \\ 132 & -0.539 & -1.963 & -0.565 \\ 134 & -0.265 & -1.30 & -0.881 \\ 132 & -0.539 & -1.963 & -0.565 \\ 134 & -1.220 & -1.963 & -0.565 \\ 134 & -1.220 & -1.962 & -0.566 \\ 134 & -1.220 & -1.962 & -0.566 \\ 135 & -2.686 & -1.962 & -0.566 \\ 135 & -2.686 & -1.962 & -0.566 \\ 135 & -2.686 & -1.962 & -0.566 \\ 126 & -3.331 & -1.071 \\ 127 & -1.848 & -0.841 & -0.462 & -1.330 \\ 122 & 5.761 & -3.331 & -1.071 \\ 125 & 5.761 & -3.331 & -1.071 \\ 126 & -3.657 & -1.957 & -0.563 \\ 122 & -0.841 & -0.462 & -1.330 \\ 122 & -0.841 & -0.361 & -0.261 & -1.266 \\ 134 & -0.881 & -3.300 & -1.072 \\ 128 & -0.668 & -3.330 & -1.072 \\ 128 & -0.668 & -3.330 & -1.072 \\ 128 & -0.688 & -3.330 & -1.073 \\ 129 & -0.881 & -3.330 & -1.073 \\ 129 & -0.881 & -3.330 & -1.073 \\ 130 & -0.74 & -1.584 & -0.840 & -0.387 \\ 131 & -0.681 & -3.330 & -1.073 \\ 132 & -1.282 & -4.661 & -0.349 & -1.583 \\ 131 & -0.649 & -1.589 & -0.663 \\ 132 & -1.925 & -2.518 & -4.941 \\ 131 & -0.881 & -3.330 & -1.073 \\ 129 & -0.212 & -0.682 & -1.689 \\ 131 & -0.881 & -3.330 & -1.073 \\ 129 & -0.212 & -0.682 & -1.689 \\ 132 & -1.282 & -1.661 & -0.349 & -1.583 \\ 132 & -1.925 & -2.518 & -4.941 \\ 131 & -0.649 & -1.589 & -1.583 \\ 131 & -0.649 & -1.589 & -1.583 \\ 132 & -1.925 & -2.518 & -4.941 \\ 131 & -0.649 & -1.589 & -1.583 \\ 132 & -1.925 & -2.518 & -0.692 \\ 133 & -3.701 & -3.485 & -4.646 \\ 133 & -3.760 & -0.601 \\ 134 & -4.349 & -4.514 & -3.485 \\ 135 & -3.770 & -1.28 & -2.460 & -3.968 \\ 133 & -3.996 & -8.319 & -3.165 \\ 134 & -4.246 & -3.889 & -7.445 \\ 135 & -3.78 & -1.741 & -1.37 & -2.870 \\ 136 & -2.648 & -3.775 & -1.448 \\ 131 & -1.204 & -4.966 & -1.699 \\ 137 & -1.204 & -4.966 & -1.691 \\ 131 & -1.204 & -4.966 & -1.691 \\ 132 & -1.204 & -4.966 & -1.691 \\ 133 & -2.476 & -1.131 & 0.881 \\ 133 & -3.701 & -3.485 & -6.448 \\ 133 & -3.496 & -3.994 & -7.109 \\ 13$		136	-2.058	-0.887	-0.114		136	-1.331	0.309	0.570		139	-1.508	-2.211	-0.014
$ \begin{matrix} 126 & 2.928 & -1.963 & -0.563 \\ 127 & 1.648 & -1.962 & -0.563 \\ 128 & 0.211 & -1.963 & -0.564 \\ 128 & 0.211 & -1.963 & -0.564 \\ 129 & -0.539 & -1.964 & -0.564 \\ 120 & -0.539 & -1.963 & -0.565 \\ 131 & -0.539 & -1.963 & -0.565 \\ 132 & -0.839 & -1.963 & -0.565 \\ 133 & -0.539 & -1.963 & -0.565 \\ 133 & -0.539 & -1.963 & -0.565 \\ 134 & -1.220 & -1.962 & -0.566 \\ 134 & -1.220 & -1.962 & -0.566 \\ 134 & -1.220 & -1.962 & -0.566 \\ 135 & -2.687 & -1.957 & -0.563 \\ 135 & -0.871 & 0.623 & 1.286 \\ 135 & -0.871 & 0.623 & 1.286 \\ 127 & 1.924 & -3.339 & -1.071 \\ 128 & -0.331 & -1.071 \\ 129 & -0.881 & -3.330 & -1.072 \\ 129 & -0.881 & -3.330 & -1.071 \\ 129 & -0.881 & -3.330 & -1.072 \\ 129 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.074 \\ 134 & -1.781 & -3.328 & -1.075 \\ 135 & -3.662 & -3.328 & -1.075 \\ 135 & -3.662 & -3.328 & -1.075 \\ 135 & -3.662 & -3.328 & -1.075 \\ 136 & -1.224 & 4.963 & -1.689 \\ 137 & -2.084 & -3.580 & -0.665 \\ 130 & -0.881 & -3.330 & -1.074 \\ 134 & -1.781 & -3.328 & -1.075 \\ 135 & -1.689 & -1.689 \\ 137 & -4.581 & -4.964 & -1.689 \\ 137 & -4.581 & -4.964 & -1.689 \\ 137 & -4.581 & -4.964 & -1.689 \\ 137 & -4.581 & -4.964 & -1.689 \\ 137 & -4.581 & -4.964 & -1.689 \\ 137 & -4.581 & -4.964 & -1.689 \\ 137 & -4.581 & -4.964 & -1.689 \\ 137 & -4.581 & -4.964 & -1.690 \\ 138 & -5.682 & -2.056 & -1.987 \\ 137 & -5.879 & -1.75 & -1.648 \\ 133 & -2.064 & -4.855 & -1.494 \\ 134 & -4.966 & -1.691 \\ 127 & -4.885 & -7.460 & -0.601 \\ 134 & -4.266 & -1.691 \\ 132 & -1.024 & -4.966 & -1.691 \\ 132 & -2.466 & -3.896 & -0.653 \\ 133 & -1.204 & -4.966 & -1.691 \\ 134 & -2.476 & -1.131 & 0.881 \\ 133 & -2.084 & -4.851 & -5.954 & -9.910 & -5.181 \\ 131 & -1.204 & -4.966 & -1.691 \\ 132 & -2.463 & -2.940 & 0.371 \\ 133 & -2.2476 & -1.131 & 0.881 \\ 133 & -2.086 & -5.954 & -9.910 & -5.164 \\ 134 & -2.878 & -5.954 & -9.910 & -5.164 \\ 134 & -2.878 & -5.954 & -9.910 & -5.164 \\ 135 & -6.073 & -4.063 & -1.291 \\ 135 & -6.073 & -4.063 & -1.291 \\ 136 & -5.954 & -9.910 & -5.104 \\$	147	125	4.589	-1.964	-0.563		137	-1.893	0.489	0.579		140	-2.118	-2.533	0.093
$ \begin{matrix} 127 & 1.648 & -1.962 & -0.564 \\ 128 & 0.211 & -1.963 & -0.564 \\ 129 & -0.539 & -1.964 & -0.564 \\ 130 & -0.539 & -1.964 & -0.564 \\ 131 & -0.539 & -1.964 & -0.564 \\ 132 & -0.539 & -1.963 & -0.565 \\ 134 & -0.539 & -1.963 & -0.565 \\ 134 & -0.209 & -1.258 & 0.948 \\ 132 & -0.539 & -1.963 & -0.565 \\ 134 & -0.209 & -1.258 & 0.948 \\ 135 & -2.686 & -1.962 & -0.566 \\ 135 & -2.686 & -1.962 & -0.566 \\ 135 & -2.686 & -1.962 & -0.566 \\ 135 & -2.686 & -1.962 & -0.566 \\ 135 & -0.871 & -0.623 & 1.339 \\ 126 & -3.377 & -3.330 & -1.071 \\ 128 & -0.881 & -3.330 & -1.071 \\ 128 & -0.881 & -3.330 & -1.071 \\ 128 & -0.881 & -3.330 & -1.072 \\ 129 & -0.881 & -3.330 & -1.073 \\ 129 & -0.881 & -3.330 & -1.073 \\ 129 & -0.881 & -3.330 & -1.073 \\ 130 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 133 & -0.881 & -3.330 & -1.073 \\ 134 & -1.652 & -0.952 & 1.020 \\ 135 & -4.724 & -4.964 & -1.689 \\ 127 & -2.083 & -4.966 & -1.689 \\ 128 & -2.004 & 0.855 & 1.436 \\ 134 & -4.966 & -1.689 \\ 129 & -0.212 & -4.966 & -1.699 \\ 127 & -2.083 & -4.966 & -1.699 \\ 128 & -2.004 & 0.855 & 1.436 \\ 134 & -2.476 & -1.131 & 0.881 \\ 133 & -1.642 & -1.555 & 0.881 \\ 131 & -1.642 & -1.555 & 0.881 \\ 132 & -1.024 & -4.966 & -1.691 \\ 134 & -2.1642 & -1.555 & 0.881 \\ 135 & -1.671 & 0.253 & 1.297 \\ 140 & -7.226 & -1.225 & -2.573 \\ 137 & -5.887 & -1.726 & -1.226 & -2.573 \\ 137 & -5.887 & -1.726 & -1.226 & -2.573 \\ 133 & -2.166 & -1.699 \\ 134 & -2.2476 & -1.131 & 0.881 \\ 135 & -3.478 & -0.663 \\ 134 & -2.164 & -1.131 & 0.881 \\ 135 & -3.687 & -0.772 \\ 135 & -3.687 & -0.726 & -1.299 \\ 135 & -3.687 & -0.761 \\ 136 & -2.604 & 0.855 & -1.485 \\ 136 & $		126	2.928	-1.963	-0.563		138	-2.854	0.670	0.588		141	-3.152	-2.855	0.201
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		127	1.648	-1.962	-0.563		139	-4.716	0.849	0.598		142	-4.920	-3.178	0.309
$ \begin{matrix} 129 & -0.539 & -1.964 & -0.564 \\ \hline 130 & -0.539 & -1.964 & -0.564 \\ \hline 131 & -0.539 & -1.963 & -0.565 \\ \hline 132 & -0.539 & -1.963 & -0.565 \\ \hline 132 & -0.539 & -1.963 & -0.565 \\ \hline 132 & -0.539 & -1.962 & -0.566 \\ \hline 134 & -1.220 & -1.962 & -0.566 \\ \hline 135 & -2.686 & -1.962 & -0.566 \\ \hline 135 & -2.686 & -1.962 & -0.566 \\ \hline 135 & -2.686 & -1.962 & -0.566 \\ \hline 135 & -2.686 & -1.962 & -0.566 \\ \hline 135 & -2.686 & -1.962 & -0.566 \\ \hline 135 & -0.861 & -0.261 & 1.266 \\ \hline 135 & -2.686 & -1.962 & -0.566 \\ \hline 135 & -0.871 & -0.623 & 1.330 \\ \hline 125 & 5.761 & -3.331 & -1.071 \\ \hline 126 & -3.377 & -3.330 & -1.072 \\ \hline 126 & -3.377 & -3.330 & -1.072 \\ \hline 128 & -0.688 & -3.330 & -1.072 \\ \hline 128 & -0.688 & -3.330 & -1.072 \\ \hline 128 & -0.688 & -3.330 & -1.072 \\ \hline 130 & -0.881 & -3.330 & -1.073 \\ \hline 131 & -0.881 & -3.330 & -1.073 \\ \hline 132 & -0.881 & -3.330 & -1.073 \\ \hline 133 & -0.881 & -3.330 & -1.073 \\ \hline 133 & -0.881 & -3.330 & -1.073 \\ \hline 133 & -0.881 & -3.330 & -1.073 \\ \hline 133 & -0.881 & -3.330 & -1.073 \\ \hline 133 & -0.881 & -3.330 & -1.073 \\ \hline 133 & -0.784 & -2.761 & 0.603 \\ \hline 133 & -0.784 & -2.761 & 0.603 \\ \hline 134 & -1.661 & -0.349 & -1.585 \\ \hline 135 & -1.671 & -0.253 & -1.297 \\ \hline 136 & -4.248 & -4.966 & -1.689 \\ \hline 127 & -2.083 & -4.966 & -1.689 \\ \hline 127 & -2.083 & -4.966 & -1.691 \\ \hline 127 & -2.083 & -4.966 & -1.691 \\ \hline 127 & -2.083 & -4.966 & -1.691 \\ \hline 127 & -2.083 & -4.966 & -1.691 \\ \hline 137 & -4.212 & -4.966 & -1.691 \\ \hline 137 & -4.212 & -4.966 & -1.691 \\ \hline 138 & -3.900 & -6.558 & -0.653 \\ \hline 130 & -4.724 & -4.966 & -1.691 \\ \hline 134 & -1.465 & -3.849 & -0.114 \\ \hline 133 & -2.164 & -4.966 & -1.691 \\ \hline 134 & -2.476 & -1.131 & 0.881 \\ \hline 135 & -4.274 & -4.58 & -0.976 \\ \hline 136 & -2.604 & 0.855 & -1.474 \\ \hline 130 & -0.974 & -7.561 \\ \hline 136 & -2.604 & 0.855 & -1.474 \\ \hline 131 & -1.204 & -4.966 & -1.691 \\ \hline 137 & -5.877 & -1.578 \\ \hline 131 & -1.204 & -4.966 & -1.691 \\ \hline 134 & -2.476 & -1.131 & 0.881 \\ \hline 133 & -2.064 & -1.884 & -0.653 \\ \hline 136 & -2.604 & 0.855 & -1.484 \\ \hline 131 & -2.88 & -0.906 & -5.88 & -0.653 \\ \hline 136 & -2.604 & 0.855 & -1.484 \\ \hline 131 & -2.88 & -0.907 & -5.74 \\ \hline 1$		128	0.211	-1.963	-0.564		127	4.665	-2.270	0.929		130	2.372	-0.664	-3.291
$ \begin{matrix} 147 \\ \hline 131 & -0.539 & -1.964 & -0.564 \\ \hline 131 & -0.539 & -1.963 & -0.565 \\ \hline 132 & -0.539 & -1.963 & -0.565 \\ \hline 134 & -1.220 & -1.962 & -0.566 \\ \hline 134 & -1.220 & -1.962 & -0.566 \\ \hline 134 & -1.220 & -1.962 & -0.566 \\ \hline 134 & -1.220 & -1.962 & -0.566 \\ \hline 134 & -1.220 & -1.962 & -0.566 \\ \hline 134 & -0.861 & -0.261 & 1.266 \\ \hline 135 & -2.687 & -1.997 & -0.563 \\ \hline 134 & -0.861 & -0.261 & 1.266 \\ \hline 135 & -0.871 & -0.861 & -0.261 & 1.266 \\ \hline 135 & -0.871 & -0.861 & -0.261 & 1.266 \\ \hline 135 & -0.871 & -0.633 & -1.330 \\ \hline 125 & 5.761 & -3.331 & -1.071 \\ \hline 126 & -0.332 & -1.071 \\ \hline 128 & 0.068 & -3.330 & -1.072 \\ \hline 129 & -0.881 & -3.330 & -1.073 \\ \hline 129 & -0.881 & -3.330 & -1.073 \\ \hline 132 & -0.881 & -3.330 & -1.073 \\ \hline 132 & -0.881 & -3.330 & -1.073 \\ \hline 132 & -0.881 & -3.330 & -1.074 \\ \hline 132 & -0.881 & -3.330 & -1.074 \\ \hline 132 & -0.881 & -3.330 & -1.074 \\ \hline 132 & -0.881 & -3.330 & -1.074 \\ \hline 132 & -0.881 & -3.330 & -1.074 \\ \hline 132 & -0.881 & -3.330 & -1.074 \\ \hline 132 & -0.881 & -3.330 & -1.074 \\ \hline 132 & -0.881 & -3.330 & -1.074 \\ \hline 132 & -0.881 & -3.330 & -1.074 \\ \hline 133 & -0.881 & -3.329 & -1.074 \\ \hline 134 & -1.652 & -0.592 & 1.020 \\ \hline 134 & -1.652 & -0.592 & 1.020 \\ \hline 134 & -1.661 & -0.349 & 1.158 \\ \hline 135 & -1.671 & 0.253 & 1.297 \\ \hline 135 & -1.264 & -4.966 & -1.691 \\ \hline 127 & 2.083 & 4.963 & -1.691 \\ \hline 127 & 2.083 & 4.963 & -1.691 \\ \hline 127 & 2.083 & 4.963 & -1.691 \\ \hline 127 & 2.083 & 4.963 & -1.691 \\ \hline 128 & 3.090 & -6.558 & -0.653 \\ \hline 134 & -1.204 & -4.966 & -1.691 \\ \hline 128 & 3.090 & -6.558 & -0.653 \\ \hline 134 & -1.204 & -4.966 & -1.691 \\ \hline 128 & 3.090 & -6.558 & -0.653 \\ \hline 134 & -1.204 & -4.966 & -1.691 \\ \hline 128 & 3.090 & -6.558 & -0.653 \\ \hline 134 & -1.204 & -4.966 & -1.691 \\ \hline 128 & 3.090 & -6.558 & -0.653 \\ \hline 134 & -2.264 & -1.940 & -1.014 \\ \hline 135 & -6.073 & -8.405 & -1.314 \\ \hline 135 & -6.073 & -8.405 & -6.435 \\ \hline 134 & -2.2470 & -2.036 & 0.626 \\ \hline 134 & -2.266 & -1.223 & -2.277 \\ \hline 135 & -1.275 & 1.648 \\ \hline 135 & -3.438 & -0.228 & 1.137 \\ \hline 135 & -1.37 & -5.871 & -1.648 \\ \hline 135 & -3.438 & -0.228 & 1.137 \\ \hline 135 & -1.204 & -9.961 & -1.694 $		129	-0.539	-1.964	-0.564	157	128	2.530	-1.909	0.881		131	0.251	-0.759	-3.106
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		130	-0.539	-1.964	-0.564		129	1.312	-1.548	0.945		132	-0.899	-1.296	-2.782
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14/	131	-0.539	-1.963	-0.565		130	-0.089	-1.186	1.009	- 167 -	133	-2.208	-1.834	-2.541
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		132	-0.539	-1.963	-0.565		131	-0.831	-0.826	1.073		134	-2.813	-2.370	-2.298
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		133	-0.539	-1.963	-0.565		132	-0.841	-0.462	1.138		135	-2.687	-2.909	-2.056
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		134	-1.220	-1.962	-0.566		133	-0.851	-0.100	1.202		136	-2.562	-3.446	-1.814
$ \begin{bmatrix} 136 & -3.657 & -1.957 & -0.563 \\ 125 & 5.761 & -3.331 & -1.071 \\ 126 & 3.377 & -3.330 & -1.071 \\ 127 & 1.924 & -3.329 & -1.071 \\ 128 & 0.068 & -3.330 & -1.072 \\ 128 & 0.068 & -3.330 & -1.073 \\ 129 & -0.881 & -3.330 & -1.073 \\ 131 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 133 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.074 \\ 133 & -0.881 & -3.330 & -1.074 \\ 133 & -0.881 & -3.328 & -1.075 \\ 135 & -3.662 & -3.328 & -1.075 \\ 135 & -3.662 & -3.328 & -1.077 \\ 128 & 0.808 & 4.966 & -1.689 \\ 127 & 2.083 & 4.966 & -1.689 \\ 126 & 4.488 & 4.966 & -1.689 \\ 127 & 2.083 & 4.966 & -1.689 \\ 127 & 2.083 & 4.966 & -1.691 \\ 129 & -0.212 & 4.966 & -1.691 \\ 132 & -1.204 & 4.966 & -1.691 \\ 132 & -1.204 & 4.966 & -1.691 \\ 132 & -1.204 & 4.966 & -1.691 \\ 133 & -2.156 & -1.496 & -1.692 \\ 132 & -1.204 & 4.966 & -1.691 \\ 133 & -2.156 & -1.496 & -1.692 \\ 134 & -1.671 & 0.253 & 1.297 \\ 128 & 0.808 & 4.965 & -1.690 \\ 127 & 2.083 & -4.964 & -1.689 \\ 137 & -4.531 & 1.454 & 1.575 \\ 137 & -4.531 & 1.454 & 1.575 \\ 130 & -0.274 & -7.456 & -3.462 \\ 134 & -1.671 & 0.253 & 1.297 \\ 136 & -2.044 & 4.966 & -1.691 \\ 137 & -4.531 & 1.454 & 1.575 \\ 130 & -0.274 & -7.06 & -0.601 \\ 131 & -1.204 & 4.966 & -1.691 \\ 132 & -2.044 & -9.66 & -1.691 \\ 132 & -2.044 & -9.66 & -1.691 \\ 132 & -2.044 & -9.66 & -1.691 \\ 132 & -2.044 & -9.66 & -1.691 \\ 132 & -2.1204 & -9.663 & -1.693 \\ 132 & -2.1204 & -9.664 & -1.693 \\ 132 & -2.1204 & -9.664 & -1.693 \\ 133 & -2.470 & -2.036 & 0.653 \\ 134 & -5.185 & -6.887 & -6.772 \\ 135 & -6.772 & 1.388 & -7.445 \\ 134 & -5.185 & -6.887 & -6.772 \\ 135 & -6.772 & 1.388 & -7.445 \\ 134 & -5.185 & -6.887 & -6.772 \\ 135 & -6.772 & 1.368 & -5.954 & -9.910 & -6.100 \\ 137 & -5.835 & -11.416 & -5.764 \\ 138 & -5.991 & -6.100 \\ 137 & -5.835 & -11.416 & -5.764 \\ 138 & -5.092 & -1.648 \\ 138 & -5.092 & -1.648 \\ 138 & -5.092 & -1.648 \\ 138 & -5.092 & -1.648 \\ 138 & -5.092 & -1.648 \\ 138 & -5.092 & -1.648 \\ 138 & -5.092 & -1.648 \\ 138 & -5.682 & -0.558 & -0.653 \\ 130 & -0.72 & -2.573 & -1.648 \\ 134 & -5.185 & -6.877 &$		135	-2.686	-1.962	-0.566		134	-0.861	0.261	1.266		137	-2.436	-3.984	-1.572
$ \begin{matrix} 125 & 5.761 & -3.331 & -1.071 \\ \hline 126 & 3.377 & -3.330 & -1.071 \\ \hline 126 & 3.377 & -3.330 & -1.071 \\ \hline 128 & 0.068 & -3.330 & -1.072 \\ \hline 129 & -0.881 & -3.330 & -1.073 \\ \hline 131 & -0.881 & -3.330 & -1.073 \\ \hline 132 & -0.881 & -3.330 & -1.073 \\ \hline 132 & -0.881 & -3.330 & -1.073 \\ \hline 133 & -0.881 & -3.330 & -1.073 \\ \hline 133 & -0.881 & -3.330 & -1.073 \\ \hline 133 & -0.881 & -3.330 & -1.074 \\ \hline 133 & -0.881 & -3.330 & -1.074 \\ \hline 133 & -0.881 & -3.329 & -1.074 \\ \hline 133 & -0.881 & -3.320 & -1.074 \\ \hline 133 & -0.881 & -3.320 & -1.074 \\ \hline 133 & -0.881 & -3.320 & -1.074 \\ \hline 133 & -0.881 & -3.320 & -1.071 \\ \hline 135 & -3.662 & -3.328 & -1.075 \\ \hline 136 & -4.728 & -3.320 & -1.071 \\ \hline 126 & 4.488 & 4.964 & -1.689 \\ \hline 127 & 2.083 & 4.966 & -1.689 \\ \hline 126 & 4.488 & 4.964 & -1.689 \\ \hline 127 & 2.083 & 4.966 & -1.691 \\ \hline 128 & 0.808 & 4.965 & -1.690 \\ \hline 128 & 0.808 & 4.965 & -1.690 \\ \hline 128 & 0.808 & 4.965 & -1.691 \\ \hline 133 & -1.204 & 4.966 & -1.691 \\ \hline 133 & -1.204 & -4.966 & -1.691 \\ \hline 133 & -1.204 & -4.966 & -1.691 \\ \hline 133 & -1.204 & -4.966 & -1.691 \\ \hline 133 & -1.204 & -4.966 & -1.691 \\ \hline 133 & -1.204 & -4.966 & -1.691 \\ \hline 133 & -1.204 & -4.966 & -1.691 \\ \hline 133 & -1.204 & -4.966 & -1.691 \\ \hline 133 & -1.204 & -4.966 & -1.691 \\ \hline 133 & -1.204 & -4.966 & -1.691 \\ \hline 133 & -1.204 & -4.966 & -1.691 \\ \hline 133 & -2.156 & -4.964 & -1.692 \\ \hline 133 & -2.156 & -4.964 & -1.693 \\ \hline 133 & -2.156 & -4.964 & -1.693 \\ \hline 133 & -2.156 & -4.964 & -1.693 \\ \hline 133 & -2.2470 & -2.036 & 0.626 \\ \hline 134 & -2.2476 & -0.396 \\ \hline 133 & -2.470 & -2.036 & 0.626 \\ \hline 134 & -2.2476 & -1.311 & 0.881 \\ \hline 133 & -2.470 & -2.036 & 0.626 \\ \hline 134 & -2.2476 & -1.131 & 0.881 \\ \hline 133 & -0.690 & -1.2914 & -5.427 \\ \hline 133 & -2.470 & -2.036 & 0.626 \\ \hline 134 & -2.2476 & -1.393 \\ \hline 134 & -5.185 & -6.897 & -6.772 \\ \hline 135 & -3.438 & -0.228 & 1.137 \\ \hline 136 & -5.954 & -9.910 & -6.100 \\ \hline 137 & -5.835 & -11.416 & -5.764 \\ \hline 138 & -6.090 & -12.914 & -5.427 \\ \hline 138 & -6.090 & -12.914 & -5.427 \\ \hline 138 & -5.092 & -2.778 & 1.36 & -3.438 & -0.228 & 1.137 \\ \hline 136 & -5.155 & 0.675 & 1.393 \\ \hline 136 & -5.954 & -9.910 & $		136	-3.657	-1.957	-0.563		135	-0.871	0.623	1.330		138	-2.311	-4.519	-1.329
$ \begin{matrix} 126 & 3.377 & -3.330 & -1.071 \\ 127 & 1.924 & -3.329 & -1.071 \\ 128 & 0.068 & -3.330 & -1.072 \\ 128 & 0.068 & -3.330 & -1.073 \\ 129 & -0.881 & -3.330 & -1.073 \\ 131 & -0.881 & -3.330 & -1.073 \\ 132 & -0.881 & -3.330 & -1.073 \\ 133 & -0.881 & -3.330 & -1.074 \\ 133 & -0.881 & -3.330 & -1.074 \\ 133 & -0.881 & -3.329 & -1.074 \\ 134 & -1.771 & -3.328 & -1.075 \\ 135 & -3.662 & -3.328 & -1.075 \\ 135 & -3.662 & -3.328 & -1.075 \\ 135 & -3.662 & -3.328 & -1.075 \\ 125 & 6.245 & 4.966 & -1.689 \\ 127 & 2.083 & 4.964 & -1.689 \\ 126 & 4.488 & 4.964 & -1.689 \\ 127 & 2.083 & 4.964 & -1.689 \\ 127 & 2.083 & 4.964 & -1.689 \\ 127 & 2.083 & 4.964 & -1.689 \\ 127 & 2.083 & 4.964 & -1.689 \\ 127 & 2.083 & 4.966 & -1.669 \\ 133 & -2.156 & 4.966 & -1.669 \\ 133 & -2.156 & 4.966 & -1.669 \\ 133 & -2.156 & 4.966 & -1.691 \\ 131 & -1.204 & 4.966 & -1.691 \\ 132 & -1.204 & 4.966 & -1.691 \\ 133 & -2.156 & 4.964 & -1.692 \\ 133 & -2.156 & 4.964 & -1.693 \\ 131 & -1.204 & 4.966 & -1.691 \\ 132 & -1.204 & 4.966 & -1.691 \\ 133 & -2.156 & 4.964 & -1.693 \\ 133 & -2.156 & 4.964 & -1.693 \\ 133 & -2.156 & 4.964 & -1.693 \\ 133 & -2.156 & 4.966 & -1.693 \\ 133 & -2.156 & 4.966 & -1.693 \\ 133 & -2.156 & 4.966 & -1.691 \\ 131 & -1.204 & 4.966 & -1.691 \\ 132 & -2.124 & 4.966 & -1.691 \\ 133 & -2.166 & -0.376 & -5.554 & -0.396 \\ 133 & -2.156 & 4.964 & -1.693 \\ 133 & -2.156 & 4.964 & -1.693 \\ 133 & -2.156 & 4.964 & -1.693 \\ 133 & -2.156 & 4.964 & -1.693 \\ 133 & -2.156 & 4.964 & -1.693 \\ 133 & -2.166 & -0.376 & -5.554 & -0.396 \\ 133 & -2.166 & -0.396 & -1.694 \\ 133 & -2.246 & -2.940 & 0.371 \\ 133 & -2.470 & -2.036 & 0.626 \\ 134 & -5.185 & -6.897 & -6.772 \\ 133 & -2.162 & -1.294 & -5.6435 \\ 134 & -5.185 & -6.897 & -6.772 \\ 135 & -3.438 & -0.228 & 1.137 \\ 136 & -5.691 & -1.244 & -5.091 \\ 136 & -5.691 & -1.244 & -5.091 \\ 136 & -5.691 & -1.244 & -5.091 \\ 136 & -5.691 & -1.291 & -5.427 \\ 136 & -5.691 & -1.291 & -5.427 \\ 136 & -5.691 & -1.291 & -5.427 \\ 136 & -5.691 & -1.291 & -5.427 \\ 136 & -5.691 & -1.291 & -5.427 \\ 136 & -5.681 & -1.392 & -1.661 \\ 137 & -5.835 & -1.1.4$		125	5.761	-3.331	-1.071		136	-1.584	0.984	1.395	-	139	-2.914	-5.058	-1.087
$ \begin{matrix} 146 \\ \hline 127 & 1.924 & -3.329 & -1.071 \\ \hline 128 & 0.068 & -3.330 & -1.072 \\ \hline 129 & -0.881 & -3.330 & -1.073 \\ \hline 130 & -0.881 & -3.330 & -1.073 \\ \hline 131 & -0.881 & -3.330 & -1.073 \\ \hline 131 & -0.881 & -3.330 & -1.073 \\ \hline 132 & -0.881 & -3.330 & -1.073 \\ \hline 132 & -0.881 & -3.330 & -1.073 \\ \hline 132 & -0.881 & -3.330 & -1.073 \\ \hline 133 & -0.881 & -3.329 & -1.074 \\ \hline 133 & -0.881 & -3.329 & -1.074 \\ \hline 133 & -0.881 & -3.328 & -1.075 \\ \hline 135 & -3.662 & -3.328 & -1.075 \\ \hline 135 & -3.662 & -3.328 & -1.075 \\ \hline 136 & -4.728 & -3.320 & -1.071 \\ \hline 125 & 6.245 & 4.966 & -1.689 \\ \hline 125 & 6.245 & 4.966 & -1.689 \\ \hline 126 & 4.488 & 4.964 & -1.689 \\ \hline 127 & 2.083 & 4.965 & -1.690 \\ \hline 128 & 0.808 & 4.965 & -1.690 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 133 & -1.204 & 4.966 & -1.691 \\ \hline 133 & -1.204 & 4.966 & -1.691 \\ \hline 133 & -1.204 & 4.966 & -1.691 \\ \hline 133 & -1.204 & 4.966 & -1.691 \\ \hline 134 & -1.692 \\ \hline 135 & -1.204 & 4.966 & -1.691 \\ \hline 135 & -1.204 & 4.966 & -1.691 \\ \hline 135 & -1.204 & 4.966 & -1.691 \\ \hline 136 & -0.472 & -1.749 & -0.141 \\ \hline 131 & -1.204 & 4.966 & -1.691 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 133 & -2.120 & -2.036 & 0.653 \\ \hline 131 & -1.204 & -9.062 & -1.693 \\ \hline 131 & -1.204 & -9.062 & -1.693 \\ \hline 131 & -1.648 & -3.849 & 0.114 \\ \hline 133 & -2.470 & -2.036 & 0.626 \\ \hline 134 & -5.185 & -6.897 & -6.772 \\ \hline 136 & -5.954 & -9.910 & -6.100 \\ \hline 137 & -5.835 & -11.416 & -5.764 \\ \hline 136 & -5.954 & -9.910 & -6.100 \\ \hline 137 & -5.835 & -11.416 & -5.764 \\ \hline 136 & -5.954 & -9.910 & -6.100 \\ \hline 137 & -5.835 & -11.416 & -5.764 \\ \hline 136 & -5.954 & -9.910 & -6.100 \\ \hline 137 & -5.835 & -11.416 & -5.764 \\ \hline 136 & -5.954 & -9.910 & -6.100 \\ \hline 137 & -5.835 & -11.416 & -5.764 \\ \hline 136 & -5.954 & -9.910 & -6.100 \\ \hline 137 & -5.835 & -11.416 & -5.764 \\ \hline 138 & -5.091 & -1.575 & -1.648 \\ \hline 136 & -5.954 & -9.910 & -6.100 \\ \hline 137 & -5.835 & -1.1416 & -5.764 \\ \hline 136 & -5.954 & -9.910 & -6.100 \\ \hline 137 & -5.835 & -1.1416 & -5.764 \\ \hline 138 & -5.954 & -9.910 & -6.100 \\ \hline 137 & $		126	3.377	-3.330	-1.071		137	-3.087	1.343	1.458		140	-4.366	-5.595	-0.845
$ \begin{matrix} 146 \\ \hline 128 & 0.068 & -3.330 & -1.072 \\ \hline 129 & -0.881 & -3.330 & -1.073 \\ \hline 131 & -0.881 & -3.330 & -1.073 \\ \hline 131 & -0.881 & -3.330 & -1.073 \\ \hline 131 & -0.881 & -3.330 & -1.074 \\ \hline 132 & -0.881 & -3.330 & -1.074 \\ \hline 132 & -0.881 & -3.320 & -1.074 \\ \hline 133 & -0.881 & -3.320 & -1.074 \\ \hline 134 & -1.771 & -3.328 & -1.075 \\ \hline 135 & -3.662 & -3.328 & -1.075 \\ \hline 135 & -3.662 & -3.328 & -1.075 \\ \hline 136 & -4.728 & -3.320 & -1.071 \\ \hline 136 & -4.728 & -3.320 & -1.071 \\ \hline 126 & 4.488 & 4.964 & -1.689 \\ \hline 126 & 4.488 & 4.964 & -1.689 \\ \hline 126 & 4.488 & 4.964 & -1.689 \\ \hline 127 & 4.853 & -1.661 & -0.349 & 1.158 \\ \hline 128 & 0.808 & 4.965 & -1.690 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 132 & -1.204 & 4.966 & -1.691 \\ \hline 133 & -2.156 & -4.964 & -1.692 \\ \hline 134 & -3.192 & -4.962 & -1.694 \\ \hline 135 & -4.979 & 1.575 & -1.648 \\ \hline 135 & -4.277 & -2.036 & 0.626 \\ \hline 134 & -5.185 & -6.877 & -6.772 \\ \hline 138 & -5.090 & -1.689 \\ \hline 131 & -1.648 & -3.484 & 0.0114 \\ \hline 132 & -2.476 & -1.131 & 0.881 \\ \hline 133 & -2.156 & -4.964 & -1.692 \\ \hline 134 & -5.185 & -6.897 & -7.445 \\ \hline 133 & -2.166 & -1.691 \\ \hline 133 & -2.277 & -2.036 & 0.626 \\ \hline 133 & -2.470 & -2.036 & 0.626 \\ \hline 133 & -5.954 & -9.910 & -6.100 \\ \hline 134 & -5.185 & -1.1416 & -5.764 \\ \hline 134 & -5.185 & -1.1416 & -5.764 \\ \hline 135 & -6.073 & -8.405 & -6.435 \\ \hline 136 & -5.954 & -9.910 & -6.100 \\ \hline 135 & -4.090 & -1.689 \\ \hline 135 & -6.073 & -8.405 & -6.435 \\ \hline 136 & -5.954 & -9.910 & -6.100 \\ \hline 137 & -5.835 & -11.416 & -5.764 \\ \hline 138 & -6.900 & -12.914 & -5.427 \\ \hline 139 & -7.681 & -14.424 & -5.091 \\ \hline 136 & -5.974 & -1.313 & 0.881 \\ \hline 138 & -7.902 & -2.478 & 1.904 \\ \hline 136 & -5.974 & -1.339 & -7.681 & -14.424 & -5.91 \\ \hline 136 & -5.974 & -9.003 & -1.589 \\ \hline 136 & -5.974 & -9.003 & -1.689 \\ \hline 136 & -5.974 & -9.003 & -1.689 \\ \hline 137 & -5.875 & -1.1416 & -5.764 \\ \hline 138 & -6.090 & -1.2.914 $		127	1.924	-3.329	-1.071		138	-4.132	1.705	1.523		141	-5.427	-6.132	-0.602
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		128	0.068	-3.330	-1.072		139	-5.808	2.065	1.587		130	1.765	-1.319	-5.581
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	146	129	-0.881	-3.330	-1.073	- 156	127	4.893	-4.569	0.383		131	-0.649	-1.550	-5.365
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		130	-0.881	-3.330	-1.073		128	2.460	-3.968	0.326		132	-1.925	-2.518	-4.941
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		131	-0.881	-3.330	-1.073		129	1.109	-3.365	0.465		133	-3.701	-3.485	-4.646
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		132	-0.881	-3.330	-1.074		130	-0.704	-2.761	0.603		134	-4.496	-4.451	-4.349
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		133	-0.881	-3.329	-1.074		131	-1.633	-2.162	0.742		135	-4.371	-5.421	-4.053
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		134	-1.771	-3.328	-1.075		132	-1.642	-1.555	0.881	166	136	-4.246	-6.388	-3.757
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		135	-3.662	-3.328	-1.075		133	-1.652	-0.952	1.020		137	-4.121	-7.356	-3.462
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		136	-4.728	-3.320	-1.071		134	-1.661	-0.349	1.158		138	-3.996	-8.319	-3.165
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		125	6.245	-4.966	-1.689	· · ·	135	-1.671	0.253	1.297		139	-4.831	-9.290	-2.870
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		126	4.488	-4.964	-1.689		136	-2.604	0.855	1.436		140	-6.732	-10.256	-2.573
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		127	2.083	-4 963	-1 689		137	-4 531	1 454	1 575		141	-7 926	-11 223	-2.277
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		128	0.808	-4 965	-1 690		138	-5.682	2.056	1 714		130	0.931	-1 983	-8 200
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		129	-0.212	-4 966	-1 691	155	127	4 853	-7 460	-0.601		131	-0.889	-2.383	-7.961
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		130	-1 204	-4 966	-1 691		128	3.090	-6 558	-0.653		132	-3 104	-3.889	-7 445
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	145	131	-1 204	-4 964	-1 692		120	0.736	-5 654	-0 396		133	-4 308	-5 394	-7 109
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		132	-1 204	-4 965	-1 693		130	-0 472	-4 749	-0 141		134	-5 185	-6 897	-6 772
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		132	_2 156	-4 964	-1 693		130	-1 465	-3 849	0 1 1 4	165	135	-6.073	-8 405	-6.435
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		134	_3 192	-4 962	-1.694		132	-1.403	-2 940	0 371	105	136	-5.073	_9.910	-6 100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		135	-4 495	-4 962	-1 694		133	-2.470	-2.036	0.626	-	137	-5 835	-11 416	-5 764
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		136	-6 448	-4 950	-1 689		134	-2.476	-1 131	0.881		138	-6 690	-12 914	-5 427
$155 \frac{157}{138} \frac{1579}{7.902} \frac{1579}{2.478} \frac{1900}{1.904} \qquad \frac{159}{136} \frac{5.159}{-0.220} \frac{-0.220}{1.157} \frac{1157}{140} \frac{159}{-9.003} \frac{-14.424}{-14.424} \frac{-0.091}{-9.003} \frac{-14.424}{-14.424} \frac{-0.091}{-14.424} \frac{-0.091}{-14.424} $		137	-5 879	1 575	1 648		135	-3 438	-0 228	1 137		139	-7 681	-14 474	-5 091
	155	138	-7.902	2.478	1.904		136	-4.515	0.675	1.393		140	-9.003	-15.927	-4.754

있다. 오차의 근평균제곱을 기준으로 보면, 3M법은 1-3 m 까지는 매우 낮은 값을 보이나 그 이후로는 오차의 근 평균제곱값이 크게 증가하는 것을 볼 수 있다. T2M 법 은 대체로 정규 크리깅과 3M 법보다 작은 근평균제곱값 을 가지는 것을 확인할 수 있다. 오차의 범위는 정규 크 리깅 결과가 다른 두 가지 방법보다 넓게 나타났다. 한 편, x=150에서는 3M와 T2M의 최대값과 최소값이 비슷 한 결과를 볼 수 있다. 이는 x=150에서의 3M T2M 분석 결과와 실제 불연속면 높이의 차이가 분석 전체에 걸쳐 일관적으로 나타났다는 것을 의미한다.

입력 자료의 패턴에 따라서 정량적으로 차이가 있지 만, Fig. 8b에서는 그물망 모사 기법과 추세 모사 기법의

Fig. 7. Typical error on a result from ordinary kriging.

Table 2. Error analysis of geo-modeling results from ordinary kriging, Mesh Modeling Method (3M) and Trend Modeling Method (T2M)

(unit : m)		front	0	1	2	3	4	5
		kriging	0.000	1.012	2.126	2.906	4.497	5.624
	RMS	3M	0.000	0.394	1.727	3.683	6.791	9.672
		T2M	0.000	0.444	0.531	2.121	4.056	6.552
	maximum	kriging	0.000	2.330	3.137	2.372	1.765	0.931
x=170		3M	0.000	0.605	0.470	-0.664	-1.319	-1.983
		T2M	0.000	0.719	0.309	-0.602	-2.277	-4.754
	minimum	kriging	0.000	-2.321	-4.920	-5.427	-7.926	-9.003
		3M	0.000	-0.611	-3.178	-6.132	-11.23	-15.93
		T2M	0.000	0.073	-0.983	-3.291	-5.581	-8.200
	RMS	kriging	0.000	1.038	1.984	2.722	2.957	3.911
		3M	0.000	0.272	0.715	1.356	2.429	3.991
		T2M	0.000	0.653	0.546	1.232	1.069	0.994
	maximum	kriging	0.000	2.213	3.033	4.665	4.893	4.853
x=160		3M	0.000	0.514	0.849	2.056	2.056	2.478
		T2M	0.000	0.824	0.598	1.587	1.714	1.904
	minimum	kriging	0.000	-2.442	-4.716	-5.808	-5.682	-7.902
		3M	0.000	-0.208	-1.317	-2.270	-4.569	-7.460
		T2M	0.000	0.463	0.493	0.881	0.326	-0.653
		kriging	0.000	0.789	1.435	2.159	2.755	3.478
	RMS	3M	0.000	0.289	0.890	1.963	3.329	4.963
		T2M	0.000	0.017	0.115	0.564	1.073	1.691
x=150	maximum	kriging	0.000	2.216	3.777	4.589	5.761	6.245
		3M	0.000	-0.288	-0.887	-1.957	-3.320	-4.950
		T2M	0.000	0.017	-0.114	-0.563	-1.071	-1.689
		kriging	0.000	-1.030	-2.058	-3.657	-4.728	-6.448
	minimum	3M	0.000	-0.289	-0.891	-1.964	-3.331	-4.966
		T2M	0.000	0.016	-0.115	-0.566	-1.075	-1.694

Fig. 8. Errors of results (a) x=150, RMS, (b) x=150, Range, (c) x=160, RMS, (d) x=160, Range, (e) x=170, RMS, (f) x=170, Range.

오차가 거의 비슷한 것을 확인 할 수 있다. 그러나 그물 망 모사 기법이 일부 결과에서는 오차의 범위가 정규 크 리깅의 결과보다도 더 커지는 등 다소 불안정한 패턴이 보이기도 하며, 분석 막장이 입력 자료와 멀어질수록 정 확도가 급격하게 떨어지는 것을 볼 수 있다(Fig. 8f). 이 는 그물망 모사 기법이 최전방 자료에 크게 의존하여 다 항식의 기울기를 산정하므로, 최전방의 자료가 전체의 경향을 반영하고 있는 정도에 따라 결과의 신뢰도가 달 라질 수 있기 때문으로 보인다.

추세 모사 기법은 비교적 오차의 폭이 작고 안정된 경 향을 보였다. 따라서 다른 기법들에 비해 상대적으로 일 괄적인 오차 보정을 수행하기에 용이하며, 분석의 정확 도 측면에서도 가장 좋은 결과를 나타내었다. 그러나 추 세 모사 기법의 경우에도 근 전방 4막장까지는 신뢰성 있는 결과를 제시하였으나, 불연속면의 경향성이 급격하 게 변하는 일부 구간(x=170)에서는 정확도가 감소하는 것을 알 수 있었다. 이는 추세 모사 기법의 한계라고 할 수 있다.

결 론

본 연구에서는 터널시공 현장에서 발생할 수 있는 공 정 위해요소들을 신속하게 분석할 수 있는 3차원 기반의 지오 모델링 기법을 개발하였다. 개발된 기법은 터널 시 공 현장의 특성을 고려하여 선형으로 확보되는 시공 중 막장 지질조사 자료로부터 막장 근 전방 영역의 단층, 파 쇄대 등의 지질 구조를 예측할 수 있다. 개발된 기법을 국내 ○○ 터널 현장에 적용한 결과, 대체로 그물망 모 사 기법은 3 m 전방까지, 추세 모사기법은 5 m 전방까 지 그 오차의 근평균제곱, 오차 범위가 정규 크리깅 결과 보다 정확한 것으로 나타났다. 또한 제안된 두 기법을 비 교할 경우 추세 모사 기법이 상대적으로 분석의 정확도 가 높게 나타났다.

본 연구는 다음과 같은 한계점들을 내포하고 있다. 우 선 적용사례가 충분치 못하므로 많은 비교사례가 없어 즉시 현장에 적용하기에는 무리가 있다는 것이다. 본 연 구는 시범적 사례로서 분석을 수행하였으며, 다양한 실 측자료를 확보하여 검증을 수행하는 방향으로 추가 연구 가 진행되어야 할 것이다. 또한 현재 제안된 방법은 확보 된 자료 중 터널 막장에 가까운 자료의 영향이 매우 크 므로 가장 최근에 확보된 불연속면의 추세 변화가 앞으 로의 추세를 실제로 반영하는 정도에 따라서 분석의 정 확도가 크게 달라지는 점도 한계점이라 할 수 있다. 이 부분은 과거 자료들의 전반적인 경향과 최근 자료의 국 소적 경향의 차이를 통계적으로 고려하여 분석에 반영함 으로써 해결할 수 있을 것으로 기대한다. 그리고 국내에 서 통상적으로 건설되는 병렬터널의 측벽부간 거리는 약 10~20 m 인 것을 감안하면 분석의 정확도가 10 m 전 방까지는 보장되어야 실제 현장에서 효과적으로 적용할 수 있을 것으로 판단된다. 따라서 전반적인 분석 결과의 정확도 개선을 위한 추가 연구가 필요할 것이다.

본 연구는 현장 지질 매핑도를 토대로 3차원 지질구조

를 모델링하는 기법에 대한 연구이다. 입력 자료로 터널 매핑 자료만을 요구하므로 기법을 비교적 쉽게 적용할 수 있다는 장점이 있으나 그로 인하여 어느 정도 한계성 을 가진다는 단점이 있다. 이는 조사 및 설계 단계에서 획득할 수 있는 다양한 지질정보를 융합하는 것으로 개선 할 수 있을 것으로 보인다. 본 연구에서 개발된 RESTIS-GM 소프트웨어가 터널 시공 현장의 의사결정 과정을 효과적으로 지원할 수 있기를 기대한다.

사 사

본 연구는 건설교통부의 2009년 첨단도시개발사업인 "IT 및 신소재를 활용한 급속안정화 터널 시공기술 개발 (급속안정화 터널시공을 위한 IT 접목형 지반 특성 조사 / 분석기술 개발)" 연구사업과 2010년 두뇌한국21 사업 의 지원으로 수행되었으며, 또한 논문작성은 서울대학교 공학연구소의 지원으로 이루어졌다.

참고문헌

- 건설교통부, 2007, IT 급속안정화 터널시공을 위한 접목형 지반특성조사/분석기술개발, 건설핵심연구개발사업 제 2차년도 연구보고서.
- 곽상환, 이두성, 2001, "GOCAD 를 이용한 저류층 속성정 보의 3차원 시각화," *물리탐사*, 제 4권, 3호, pp. 80-83.
- 김성중, 최요순, 박형동, 배규진, 2008, "터널 설계 및 시공 지반정보의 분석을 위한 3차원 가시화 소프트웨어 개 발," 한국지구시스템공학회지, 제 45권, 1호, pp. 42-53.
- 마상준, 서경원, 2002, "터널 정보관리 시스템과 터널 붕락 예측 시스템 적용성 연구," *한국철도학회논문집*, 제 5권, 2호, pp. 84-92.
- 서백수, 손권익, 차영호, 2005, "심부지하터널 조사를 위한 지오토모그래피의 응용," *한국지구시스템공학회지*, 제 42권, 6호, pp. 588-594.
- 이창우, 이송희, 최수일, 백동호, 문선경, 1996, "Network 이론을 이용한 차량터널 환기 시스템 시뮬레이션 모델 개발 연구," *1996년도 제 67회 학술발표회 논문집*, 한국 자원공학회, 서울대학교, 서울, 1996.10.18. pp. 80-94.
- 홍성완, 배규진, 서용석, 김창용, 김광염, 2002, "지반조사 정보의 3차원 가시화 시스템 개발", *지질공학*, 제 12권, 2호, pp. 179-187.
- Bellman R., Kashef B. and Vasudevan R., 1973, "Dynamic Programming and Bicubic Spline Interpolation," *Journal* of Mathematical Analysis and Applications, Vol. 44, pp. 160-174.

- Breunig, M., 1999, "An approach to the intergration of spatial data and system for a 3D geo-information system," *Computers and Geosciences*, Vol. 25, No. 1, pp. 39-48.
- Choi, Y., Yoon, S.Y. and Park, H.D., 2009, "Tunneling Analyst: a 3D GIS extension for rock mass classification and fault zone analysis in tunneling," *Computers & Geosciences*, Vol. 35, No. 6, pp. 1322-1333.
- Dubrule, O., 1982, "Comparing Splines and Kriging," Computers and Geosciences, Vol. 10, No. 2-3, pp. 327-338.
- de Kemp, E.A, 2000, "3-D Visualization of structural field data: examples from the Archen Caopatina Formation, Abitibi greenstone belt, Quebec, Canada," *Computers and Geosciences*, Vol. 26, No. 5, pp. 509-530.
- Dirk, B., Meibner, M. and Huttner, T., 1999, "OpenGLassisted occlusion culling for large polygonal models," *Computers and Graphics*, Vol. 23, No. 5, pp. 667-679.
- Lawson J.D. and Morris J.L, 1978, "Extrapolation of first order methods for parabolic partial differential equations I", *Society for Industrial and Applied Mathematics*, Vol. 15, No. 6, pp. 1212-1224.
- Meyer, D. E., Harvey, E. L., Bulloch, T. E., Voncannon, J. C. and Shefield, T. M., 2002, "Use of Seismic attributes in 3-D geovolume interpretation," *The Leading Edge*, pp. 1377-1381.
- Pouliot, J., 2008, "Reasoning about geological space: Coupling 3D GeoModels and topological queries as an aid to spatial data selection," *Computers and Geosciences*, Vol. 34, No. 5, pp. 529-541.
- The Australian, "Tunnel work goes on despite cave-in," November 03, 2005.
- Wu, Q. and Xu, H., 2003, "An approach to computer modeling and visualization of geological faults in 3D," *Computers and Geosciences*, Vol. 29, No. 4, pp. 503-509.
- Wu, Q., Xu, H. and Zou, X., 2005, "An effective method for 3D geological modeling with multi-source data integration," *Computers and Geosciences*, Vol. 31, No. 1, pp. 35-43.
- Wycisk, P., Hubert, T., Gossel, W. and Neumann, Ch., 2009, "High-resolution 3D spatial modelling of complex geological structures for an environmental risk assessment of abundant mining and industrial megasites," *Computers* and Geosciences, Vol. 35, No. 1, pp. 165-182.

이 희 욱

2009년 서울대학교 공과대학 에너지자 원공학과 공학사

현재 서울대학교 공과대학 에너지시스템공학부 석사과정 (E-mail; fade1211@snu.ac.kr)

최 요 순

현재 부경대학교 에너지자원공학과 전임강사 (本 學會誌 第47券 第5号 參照)

박 형 동

현재 서울대학교 공과대학 에너지시스템공학부 교수 (本 學會誌 第47券 第4号 參照)