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Seismic Characterization of Shale-Gas Reservoirs: A Review 

Gwang-Hoon Lee , Chang-Hoon Shin, Yong-Wan Kim and Young-In Kwon

Abstract : The goals of seismic characterization of shale-gas reservoirs are to delineate natural fractures and predict 
the rock properties and fracability of the shales. Faults and fracture zones can be identified from coherence-group 
and curvature attributes. P and S impedances and density from pre-stack inversion can be combined to compute 
Young’s modulus, Poisson’s ratio, and other elastic parameters for the prediction of the brittleness and fracability 
of shale-gas reservoirs. The elastic parameters from pre-stack inversion should be calibrated to represent the values 
at in-situ conditions. The azimuthal anisotropy due to vertical fractures causes variations of seismic amplitude and 
velocity with azimuth that can be observed from wide-azimuth seismic data. The fracture density and orientation 
can be predicted from the azimuthal anisotropy. S-wave data can also help predict the azimuthal anisotropy. The 
stress state of shale-gas reservoirs estimated from wide-azimuth data can be used to identify areas for fracking.
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Fig. 1. Horizon slices of (a) variance and (b) coherence 
along top Woodford Shale and (c) seismic vertical section 
AA’ with faults and fractures interpreted. Blue dots indicate 
top Woodford Shale. Yellow arrows indicate highly de-
formed area. Green arrows indicate subtle anticline folds. 
Two attributes provide good delineation of fracture distribu-
tion. From Guo et al., (2010). Image courtesy of CGGVeritas. 
Used by permission.
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Fig. 2. Section view of Ant density cube with formation 
micro-scanner image (FMI) interpretation of fracture density
(right track) overlain. Higher Ant density at well location 
coincides with high fracture density determined from FMI 
data. From Godfrey and Bachrach (2008). Used by permission.

Fig. 3. Time slices through (a) seismic amplitude, (b) 
coherence, and (c) most-positive curvature volumes. While 
coherence display is featureless in high coherence (white) 
areas, most-positive curvature reveals NS flexures in those 
areas. Curvature display also shows through-going EW 
flexure in southern part of area. From Chopra and Marfurt 
(2007b). Used by permission.
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Fig. 4. (a) Most-positive curvature attribute horizon slice 
shown intersected with seismic section. (b) Most-negative 
curvature attribute horizon slice shown intersected with 
seismic section. Curvature attributes reveal very small 
peaks and troughs in seismic section, which are associated 
with faults and fracture zones. From Chopra and Marfurt 
(2007c). Used by permission.

Fig. 5. (a) Microseismic events from two hydraulic fracturing wells. (b)-(d) Acoustic impedance images from three inline 
sections with miscroseismic events displayed in foreground. Majority of microseismic events are located in low impedance 
zones. From Guo and Marfurt (2011). Used by permission.
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Fig. 6. Brittleness (black) and most-negative curvature 
(blue and white) of top of a reservoir. Brittle zones, marked 
by red ellipses, generally coincide with large values (blue) 
of most-negative curvature. Data courtesy of Nova Scotia 
Department of Energy and Canada Nova Scotia Offshore 
Petroleum Board.
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Fig. 7. Common-offset-common-azimuth (COCA) plot
illustrating traces from specific offset ranges arranged by
azimuth. In horizontally transverse isotropic (HTI) media, 
horizontal reflectors appear as sinusoidal events in COCA 
plot. From Close et al., (2010). Used by permission.

Fig. 8. Common-offset-common-azimuth (COCA) cube dis-
played in 3D. From Gray (2007). Used by permission.
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Fig. 9. (a) Amplitude variation with offset (AVO) for the interface between unfractured seal and an unfractured and fractured 
reservoirs, assuming that the acoustic impedance of the reservoir is slightly greater than that of the seal. If the reservoir 
is unfractured or the incident P-wave strike the fractures in the fractured reservoir at or near zero degree, there is little AVO 
response and stacking produces a large amplitude (b). If the incident P-wave perpendicularly strike the fractures, there is 
a strong AVO response, resulting in a very low amplitude in the stacked trace (c). Adapted from Williams and Jenner (2002). 

Fig. 10. Common-offset-common-azimuth (COCA) data, 
showing azimuthal amplitude anisotropy, displayed in 2D 
with offsets increasing from right to left. Yellow lines 
divide individual common-offset data sets and each common
-offset data set contains 0-180 degree azimuths. Amplitude 
variation with azimuth (AVAZ) is seen at longer offsets. 
From Gray (2007). Used by permission.

Fig. 11. Fracture density and orientation predicted from 
amplitude variation with azimuth (AVAZ). Well path, 
marked in white, crosses reservoir at cross-hairs indicating 
moderately intense fracturing with strike of NNE at well 
location. Image courtesy of CGGVeritas. Used by permission.

Fig. 12. Amplitude variation with azimuth (AVAZ) fracture 
density section. Well indicated by the black line penetrated 
stacked large fracture density anomalies (red). From Gray 
(2008). Used by permission.

Fig. 13. Common-offset-common-azimuth (COCA) data, 
showing azimuthal velocity anisotropy, displayed in 2D with 
offsets increasing from right to left. Yellow lines divide 
individual common-offset data sets and each common-offset 
data set contains 0-180 degree azimuths. Velocity variations 
with azimuth, observable as wobbles across reflections, are 
seen at longer offsets. From Gray (2007). Used by permission.
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Fig. 14. Fracture density from velocity variation with 
azimuth (VVAZ). Fracture trends show good correlation 
with faults. Image courtesy of Arcis Seismic Solutions. 
Used by permission.

Fig. 15. (a) Fracture density from velocity variation with azimuth (VVAZ). (b) Fracture density from amplitude variation 
with azimuth (AVAZ). Three zones, marked by A, B, and C, with large fracture density are predicted. From Wang et
al., (2007). Used by permission.
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Fig. 17. S-wave splitting in fractured rock. S wave splits into 
two components S1 and S2 that transmit through frac-
ture zone. S1 is fast-S mode and its particle-displacement 
is parallel to fracture orientation. S2 is slow-S mode and 
its particle displacement is perpendicular to fracture planes. 
Adapted from Hardage (2011a).

Fig. 16. P-, SH-, and SV-wave propagation. In SH-wave, particle motion is perpendicular to vertical plane defined by source, 
receiver and reflection point. In SV-wave, particle motion is confined to plane and parallel to source-receiver line.
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Fig. 18. Relationship between slow-S velocity and fracture 
density. S2 velocity decreases with increasing fracture 
density. S1 velocity and P-wave velocity change little across
blocks A through E. There is no S-wave splitting in 
isotropic blocks A and E. Adapted from Hardage (2011c).

Fig. 19. Polarization orientation (individual vectors) and 
time-delay magnitude (color) predicted from multi-com-
ponent data. Rose plot illustrates distribution of fast shear 
(S1) polarizations. Image courtesy of CGGVeritas. Used by
permission.
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Fig. 20. (a) Crossplot of differential horizontal stress ratio 
(DHSR) versus Young’s modulus. Preferred areas for 
hydraulic fracturing are indicated in green, less desirable 
areas in yellow, and poor areas in red. (b) Map of zones 
highlighted in crossplot in (a). Fracture swarms are likely 
form in green areas whereas red areas are where rocks are 
more ductile and thus less likely to fracture. Yellow areas 
are where aligned fractures are likely to occur. Modified 
from Gray et al., (2010). Image courtesy of CGGVeritas. 
Used by permission.

Fig. 21. Young’s modulus and plates for differential 
horizontal stress ratio (DHSR). Size of plate is proportional 
to magnitude of DHSR and direction of plate shows 
direction of local maximum horizontal stress. Modified 
from Gray et al., (2010). Image courtesy of CGGVeritas. 
Used by permission.
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