All Issue

2020 Vol.57, Issue 3 Preview Page

Technical Report


June 2020. pp. 295-308
Abstract


References
1 

Abbas, A.K., Flori, R., Almubarak, H., Dawood, J., Abbas, H., and Alsaedi, A., 2019. Intelligent Prediction of Stuck Pipe Remediation Using Machine Learning Algorithms, SPE Annual Technical Conference and Exhibition, Calgary, Alberta, Canada, Sep. 30-Oct. 2, SPE 196229.

10.2118/196229-MS
2 

Baker Hughes, a GE company (BHGE), 2017. Minds + Machines Conference, San Francisco, California, USA, Oct. 25-26.

3 

Carpenter, 2019. Artificial Intelligence Improves Seismic-Image Reconstruction, J. Pet. Technol., 71(10), p.65-66.

10.2118/1019-0065-JPT
4 

Chen, Y., He, K., and Tso, G.K.F., 2017. Forecasting Crude Oil Prices: a Deep Learning based Model, Procedia Comput. Sci. 122(2017), p.300-307.

10.1016/j.procs.2017.11.373
5 

Chu, M.-G., Min, B., Kwon, S., Park, G., Kim, S., and Huy, N.X., 2020. Determination of an Infill Well Placement using a Data-driven Multi-modal Convolutional Neural Network. J. Pet. Sci. Eng., 106805.

10.1016/j.petrol.2019.106805
6 

CompTIA, 2020.06.24, https://www.comptia.org.

7 

Crnkovic-Friis, L. and Erlandson, M., 2015. Geology Driven EUR Prediction Using Deep Learning, SPE Annual Technical Conference and Exhibition, Houston, Texas, USA, Sep. 28-30, SPE 174799.

10.2118/174799-MS
8 

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde- Farley, D., Ozair, S., Courville, A., and Bengio, Y., 2014. Generative adversarial nets. Advances in Neural Information Processing Systems, Montréal, Quebec, Canada, p.2672-2680.

9 

Innovationmap, 2020.06.24., https://houston.innovationmap.com.

10 

JPT, 2018a. University Group Lists "Most Promising" Oil & Gas Startups of the Year (09 May 2018).

11 

JPT, 2018b. Culture Change Needed To Realize Full Value of Digital (25 Sep. 2018).

12 

JPT, 2019. Wood Mackenzie: Peak Oil Demand Is Coming, Will Transform Exploration Sector (02 Jul. 2019).

13 

JPT, 2020. Google Says No More AI or Machine Learning for Upstream Industry (20 May 2020).

14 

Kim, J., Yang, H., and Choe, J., 2020a. Robust Optimization of the Locations and Types of Multiple Wells using CNN based Proxy Models. J. Pet. Sci. Eng., 193, p.107424.

10.1016/j.petrol.2020.107424
15 

Kim, S., Lee, K., Lim, J., Jeong, H., and Min, B., 2020b. Development of Ensemble Smoother-Neural Network and its Application to History Matching of Channelized Reservoirs. J. Pet. Sci. Eng., 191, p.107159.

10.1016/j.petrol.2020.107159
16 

Krizhevsky, A., Sutskever, I., and Hinton, G.E., 2012. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, p.1097-1105.

17 

mc.ai, 2020.06.24, https://mc.ai.

18 

Min, B., 2020. Current Status and Prospects of Artificial Intelligence in E&P Business. Petronet Weekly Review.

19 

MOTIE, 2020. Basic Plan for Resources Development (Proposal) - 6th Basic Plan for Energy and Mineral Resources Development (2020∼2029).

20 

Rice University News and Media Relations, 2019. 'Most promising' companies win Rice Alliance Startup Roundup at OTC (09 May 2019).

21 

Society of Petroleum Engineers, 2020.06.24., https://www.spe.org.

22 

Tractica, 2019. Artificial Intelligence Market Forecasts, Omdia︳Tractica, 48p.

23 

Zion Market Research, 2019. AI In Oil and Gas Market by Type, by Function, and by Application: Global Industry Perspective, Comprehensive Analysis, and Forecast, 2018-2025, Zion Market Research.

Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 57
  • No :3
  • Pages :295-308
  • Received Date :2020. 06. 09
  • Revised Date :2020. 06. 26
  • Accepted Date : 2020. 06. 26