All Issue

2024 Vol.61, Issue 4 Preview Page

General Remarks

31 August 2024. pp. 307-321
Abstract
References
1

Ahmadkelayeh, S., and Hawboldt, K., 2020. Extraction of lipids and astaxanthin from crustacean by-products: A review on supercritical CO2 extraction, Trends in Food Science & Technology, 103, p.94-108.

10.1016/j.tifs.2020.07.016
3

Baiker, A., 1998. Supercritical fluids in heterogeneous catalysis, Chemical Reviews, 99(2), p.453-474.

10.1021/cr970090z11848989
4

Bankole, O.E., and Lei, L., 2018. Recovery of LiMn1/3Ni1/3 Co1/3O2 from spent lithium-ion battery using a specially designed device, Environmental Engineering and Management Journal, 17, p.1043-1051.

10.30638/eemj.2018.104
5

Bi, H., Zhu, H., Zu, L., Bai, Y., Gao, S., and Gao, Y., 2019. A new model of trajectory in eddy current separation for recovering spent lithium iron phosphate batteries, Waste Management, 100, p.1-9.

10.1016/j.wasman.2019.08.04131493683
6

Chen, X., Li, S., Wu, X., Zhou, T., and Ma, H., 2020. In-situ recycling of coating materials and Al foils from spent lithium ion batteries by ultrasonic-assisted acid scrubbing, Journal of Cleaner Production, 258, 120943.

10.1016/j.jclepro.2020.120943
8

Gaines, L., Sullivan, J., Burnham, A., and Belharouak, I., 2011. Life-cycle analysis for lithium-ion battery production and recycling, Transportation Research Board 90th Annual Meeting, Transportation Research Board, Washington, DC, p.23-27.

9

Grützke, M., Kraft, V., Weber, W., Wendt, C., Friesen, A., Klamor, S., Winter, M., and Nowak, S., 2014. Supercritical carbon dioxide extraction of lithium-ion battery electrolytes, The Journal of Supercritical Fluids, 94, p.216-222.

10.1016/j.supflu.2014.07.014
10

Hanisch, C., Loellhoeffel, T., Diekmann, J., Markley, K.J., Haselrieder, W., and Kwade, A., 2015. Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes, Journal of cleaner production, 108, p.301-311.

10.1016/j.jclepro.2015.08.026
11

He, K., Zhang, Z.Y., Alai, L., and Zhang, F.S., 2019. A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries, Journal of Hazardous Materials, 375(5), p.43-51.

10.1016/j.jhazmat.2019.03.12031039463
12

He, L.P., Sun, S.Y., Song, X.F., and Yu, J.G., 2015. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning, Waste Management, 46, p.523-528.

10.1016/j.wasman.2015.08.03526323202
13

Jambal, D., Kim, B.G., Jeon, H.S., and Lee, J.H., 2017. Physical separation using an autogenous medium on coal, Separation Science and Technology, 52(5), p.958-964.

10.1080/01496395.2016.1254660
14

Jung, S.Y., Kwon, D.H., Park, S.H., Kwon, K.J., Tsang, Y.F., and Kwon, E.E., 2021. Valorization of a spent lithium-ion battery electrolyte through syngas formation using CO2-assisted catalytic thermolysis over a battery cathode material, Journal of CO2 Utilization, 50, 101591.

10.1016/j.jcou.2021.101591
15

Khodadadmahmoudi, G., Javdan Tabar, K., Homayouni, A.H., and Chehreh Clgani, S., 2023. Recycling spent lithium batteries-an overview of pretreatment flowsheet development based on metallurgical factors, Environmental Technology Reviews, 12(1), 2248559.

10.1080/21622515.2023.2248559
16

Kim, K.H. and Hoon, L., 2022, Analysis of crushing/classification process for recovery of black mass from Li-ion battery and mathematical modeling of mixed materials, Resource Recycling, 31(6), p.81-91.

10.7844/kirr.2022.31.6.81
17

Kim, Y.J., 2024. Analysis of the effect of recycling and reuse of used electric vehicle batteries in Korea, Economic and Environmental Geology, 57(1), p.83-91.

10.9719/EEG.2024.57.1.83
18

Klohs, D., Offermanns, C., Heimes, H., and Kampker, A., 2023. Automated Battery Disassembly-Examination of the Product-and Process-Related Challenges for Automotive Traction Batteries, Recycling, 8(6), p.89-99.

10.3390/recycling8060089
19

Korea Energy Economics Institute, 2018. Policy research for establishing a market for used electric vehicle batteries, Ulsan, Korea, 184p.

20

Li, C., Kou, P., Wen, H., Zhou, Y., Gao, X., and Mi, Y., 2024. Efficient and environmentally friendly separation and recycling of cathode materials and current collectors for lithium-ion batteries by fast Joule heating, Journal of Alloys and Compounds, 990, 174446.

10.1016/j.jallcom.2024.174446
21

Mao, Z., Song, Y., Zhen, A. G., and Sun, W., 2024. Recycling of electrolyte from spent lithium-ion batteries, Next Sustainability, 3, 100015.

10.1016/j.nxsust.2023.100015
22

MarketsandMarkets, 2024. Lithium-ion Battery Recycling Market by Source, Battery Chemistry, Battery Components, Recycling Process, and Region - Global Forecast to 2032, Pune, India, 190p.

23

Marklines, 2024.08.01, https://www.marklines.com

24

Mu, D., Liu, Y., Li, R., Ma, Q., and Dai, C., 2017. Transcritical CO2 extraction of electrolytes for lithium-ion batteries: optimization of the recycling process and quality-quantity variation, New Journal of Chemistry, 41(15), p.7177-7185.

10.1039/C7NJ00771J
25

Nowak, S. and Winter, M., 2017. The role of sub-and supercritical CO2 as "processing solvent" for the recycling and sample preparation of lithium ion battery electrolytes, Molecules, 22(3), p.403-423.

10.3390/molecules2203040328272327PMC6155197
26

Padwal, C., Pham, H.D., Jadhav, S., Do, T.T., Nerkar, J., Hoang L.T.M, Nanjundan, A.K., Mundree, S.G., and Dubal, D.P., 2022. Deep Eutectic Solvents: Green Approach for Cathode Recycling of Li-ion Batteries, Advanced Energy & Sustainability Research, 3(1), 2100133.

10.1002/aesr.202100133
27

Silveira, A.V.M., Santana, M.P., Tanabe, E.H., and Bertuol, D.A., 2017. Recovery of valuable materials from spent lithium ion batteries using electrostatic separation, International Journal of Mineral Processing, 169, p.91-98.

10.1016/j.minpro.2017.11.003
28

SNE research, 2023. Recycling/Reuse Technology Trends and Market Outlook(~2040), Seongnam, Korea, 142p.

30

Sommerville, R., Shaw-Stewart, J., Goodship, V., Rowson, N., and Kendrick, E., 2020. A review of physical processes used in the safe recycling of lithium ion batteries, Sustainable Materials and Technologies, 25, e00197.

10.1016/j.susmat.2020.e00197
31

Sun, L. and Qiu, K., 2011. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries, Journal of hazardous materials, 194, p.378-384.

10.1016/j.jhazmat.2011.07.11421872390
32

Sunderlin, N., Colclasure, A., Yang, C., Major, J., Fink, K., Saxon, A., and Keyser, M., 2023. Effects of cryogenic freezing upon lithium-ion battery safety and component integrity, Journal of Energy Storage, 63, 107046.

10.1016/j.est.2023.107046
33

Tokoro, C., Lim, S., Teruya, K., Kondo, M., Mochidzuki, K., Namihira, T., and Kikuchi, Y., 2021. Separation of cathode particles and aluminum current foil in Lithium-Ion battery by high-voltage pulsed discharge Part I: Experimental investigation, Waste Management, 125, p.58-66.

10.1016/j.wasman.2021.01.00833684665
34

Vanderbruggen, A., Sygusch, J., Rudolph, M., and Serna-Guerrero, R., 2021. A contribution to understanding the flotation behavior of lithium metal oxides and spheroidized graphite for lithium-ion battery recycling, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 127111.

10.1016/j.colsurfa.2021.127111
35

Velázquez-Martínez, O., Valio, J., Santasalo-Aarnio, A., Reuter, M., and Serna-Guerrero, R., 2019. A critical review of lithium-ion battery recycling processes from a circular economy perspective, Batteries, 5(4), p.68-100.

10.3390/batteries5040068
36

Wang, H., Huang, K., Zhang, Y., Chen, X., Jin, W., Zheng, S., Zhang, Y., and Li, P., 2017. Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system, ACS Sustainable Chemistry & Engineering, 5(12), p.11489-11495.

10.1021/acssuschemeng.7b02700
37

Wang, H., Liu, J., Bai, X., Wang, S., Yang, D., Fu, Y., and He, Y., 2019. Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding, Waste Management, 91, p.89-98.

10.1016/j.wasman.2019.04.05831203946
38

Wang, M., Liu, K., Yu, J., Zhang, Q., Zhang, Y., Valix, M., and Tsang, D.C., 2023. Challenges in recycling spent lithium‐ion batteries: spotlight on polyvinylidene fluoride removal, Global Challenges, 7(3), 2200237.

10.1002/gch2.20220023736910467PMC10000285
39

Wang, M., Tan, Q., Liu, L., and Li, J., 2019a. A facile, environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries, ACS Sustainable Chemistry & Engineering, 7(15), p.12799-12806.

10.1021/acssuschemeng.9b01546
40

Wang, M., Tan, Q., Liu, L., and Li, J., 2019b. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt, ACS sustainable chemistry & engineering, 7(9), p.8287-8294.

10.1021/acssuschemeng.8b06694
41

Xu, R., Lei, S., Wang, T., Yi, C., Sun, W., and Yang, Y., 2023. Lithium recovery and solvent reuse from electrolyte of spent lithium-ion battery, Waste Management, 167, p.135-140.

10.1016/j.wasman.2023.05.03437262939
42

Yun, S.J., Kim, H.G., Park, J.W., Lee, N.H., Lee, J.D., Choi, Y.H., and Chung, G.B, 2023. Research on Initial Location Recognition Method of Waste-battery Pack/Module for Waste-battery Disassembly Process, Proceedings of the 2023 Korea Society for Precision Engineering, KSPE, Seoul, Korea, p.161.

43

Zhang, G., Du, Z., He, Y., Wang, H., Xie, W., and Zhang, T., 2019. A sustainable process for the recovery of anode and cathode materials derived from spent lithium-ion batteries, Sustainability, 11(8), 2363.

10.3390/su11082363
44

Zhang, G., He, Y., Wang, H., Feng, Y., Xie, W., and Zhu, X., 2020. Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent lithium-ion batteries, ACS Sustainable Chemistry & Engineering, 8(5), p.2205-2214.

10.1021/acssuschemeng.9b05896
45

Zhang, T., He, Y., Wang, F., Li, H., Duan, C., and Wu, C., 2014a. Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy, Separation and Purification Technology, 138, p.21-27.

10.1016/j.seppur.2014.09.033
46

Zhang, X., Xie, Y., Cao, H., Nawaz, F., and Zhang, Y., 2014b. A novel process for recycling and resynthesizing LiNi1/3 Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries, Waste Management, 34(9), p.1715-1724.

10.1016/j.wasman.2014.05.02324973865
47

Zhong, X., Liu, W., Han, J., Jiao, F., Qin, W., Liu, T., and Zhao, C., 2019. Pyrolysis and physical separation for the recovery of spent LiFePO4 batteries, Waste Management, 89, p.83-93.

10.1016/j.wasman.2019.03.06831079762
48

Zhu, Y., Ding, Q., Zhao, Y., Ai, J., Li, Y., and Cao, Y.C., 2020. Study on the process of harmless treatment of residual electrolyte in battery disassembly, Waste Management & Research, 38(11), p.1295-1300.

10.1177/0734242X2091475232308154
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 61
  • No :4
  • Pages :307-321
  • Received Date : 2024-08-06
  • Revised Date : 2024-08-23
  • Accepted Date : 2024-08-26