All Issue

2019 Vol.56, Issue 6 Preview Page

Review


December 2019. pp. 665-675
Abstract


References
1 

Abbas, M.M., Tankosic, D., Craven, P.D., Spann, J.F., LeClair, A., and West, E.A., 2007. Lunar dust charging by photoelectric emissions. Planetary and Space Science, 55, 953-965.

10.1016/j.pss.2006.12.007
2 

Afshar-Mohajer, N., Damit, B., Wu, C.-Y., and Sorloaica- Hickman, N., 2011. Electrostatic particle collection in vacuum. Advances in Space Research, 48(5), 933-942.

10.1016/j.asr.2011.04.030
3 

Agosto, W.N., 1981. Beneficiation and powder metallurgical processing of lunar soil metal. In Space Manufacturing 4, Proc. 5th Princeton/AIAA Conf. NY: AIAA, p.365-370.

10.2514/6.1981-32636266679
4 

Agosto, W.N., 1985. Electrostatic concentration of lunar soil minerals. In Lunar Bases and Space Activities of the 21st Century. (Houston: Lunar and Planetary Insti.), p.453-464.

5 

Agosto, W.N., 1992. Lunar beneficiation. NASA Johnson Space Center, Space Resources Volume3: Materials, Technical Report, p.153-161.

6 

Alexiadis, A., Alberini, F., and Meyer, M.E., 2017. Geopolymers from lunar and Martian soil simulants. Advances in Space Research, 59, 490-495.

10.1016/j.asr.2016.10.003
7 

Anders, E. and Grevesse, N. 1989. Abundances of the elements: meteoritic and solar. Seochim. Cosmochim. Acta, 53, 197-214.

10.1016/0016-7037(89)90286-X
8 

Ata, S., Gournival, G., and Manefield, M., 2016. Resource recovery in space. in Proceedings Third International Future Mining Conference, p.275-280 (The Australasian Institute of Mining and Metallurgy: Melbourne).

9 

Battler, M.M. and Spray, J.G., 2009. The shawmere anorthosite and OB-1 as lunar highland regolith simulants. Planetary and Space Science, 57, 2128-2131.

10.1016/j.pss.2009.09.003
10 

Berg, O.E., 1978. A lunar terminator configuration. Earth Planetary Science Letters, 39, 377-381.

10.1016/0012-821X(78)90025-0
11 

Berkebile, S. and Gaier, J.R., 2012. Adhesion in a vacuum environment and its implications for dust mitigation techniques on airless bodies. 42nd International Conference on Environmental Systems 2012, ICES 2012.

10.2514/6.2012-3465PMC3498135
12 

Burelle, A., 2010. Mining the moon: a first step in harnessing extraterrestrial resources. 61st International Astronautical Congress 2010, IAC 2010, 8, 6914-6918.

13 

Caps, H., Delon, G., Vandewalle, N., Guillermic, R.M., Biance, A.L., Saulnier, L., Yazhgur, P., Rio, E., Salonen, A., and Langevin, D., 2014. Does water foam exist in microgravity? Europhysics News, 45, 22-25.

10.1051/epn/2014303
14 

Cardus, D., 1994. Artificial gravity in space and in medical research. Journal of Gravitational Physiology: A Journal of the International Society for Gravitational Physiology, 1, 19-22.

15 

Choi, S.H., Nguyen, T.T., and Yoo, K., 2018. Ni cementation followed by magnetic separation for recovery of unreacted Zn from by-product of Zn smelting process. Journal of Korean Society of Mineral and Energy Resources Engineering, 55, 121-126.

10.12972/ksmer.2018.55.2.121
16 

Christakis, N., Chapelle, P., and Patel, M.K., 2006. Analysis and modeling of heaping behavior of granular mixtures within a computational mechanics framework. Advanced Powder Technology, 17, 383-398.

10.1163/156855206777866173
17 

Clark, P.E., Curtis, S.A., Minetto, F., Marshall, J., Nuth, J., and Calle, C., 2010. SPARCLE: Electrostatic dust control tool proof of concept. AIP Conference Proceedings, 1208, 549-556.

10.1063/1.3326283PMC3112323
18 

Colwell, J.E., Robertson, S.R., Horányi, M., and Wang X., 2009. Lunar Dust Levitation. Journal of Aerospace Entgineering, 22, 2-9.

10.1061/(ASCE)0893-1321(2009)22:1(2)
19 

Cooper, B.L. and Simon, T., 2007. ISRU production of life support consumables for a lunar base SAE Technical Papers. doi:10.4271/2007-01-3106.

10.4271/2007-01-3106
20 

Corrias, G., Licheri, R., Orrú, R., and Cao, G., 2012. Self- propagating high-temperature reactions for the fabrication of Lunar and Martian physical assets. Acta Astronautica, 70, 69-76.

10.1016/j.actaastro.2011.07.022
21 

Crawford, I.A., Anand, M., Cockell, C.S., Falcke, H., Green, D.A., Jaumann, R., and Wieczorek, M.A., 2012. Back to the Moon: the scientific rationale for resuming lunar surface exploration. Planetary and Space Science, 74, 3-14.

10.1016/j.pss.2012.06.002
22 

Djobo, J.N.Y., Elimbi, A., and Tchakouté, H.K., 2016. Volcanic ash-based geopolymer cements/conceretes: the current state of the art and perspectives. Environtal Science and Pollution Research, doi:10.1007/s11356-016-8230-8.

10.1007/s11356-016-8230-827981480
23 

Ellery, A.A., Lowing, P., Wanjara, P., Kirby, M., Mellor, I., and Doughty, G., 2017. FFC Cambridege process and metallic 3D printing for deep in-situ resource utilisation - A match made on the moon. Proceedings of the International Astronautical Congress, IAC, 16, 10768-10778.

24 

Elvis, M., 2016. What can space resources do for astronomy and planetary science? Space Policy, 37, 65-76.

10.1016/j.spacepol.2016.08.001
25 

Fischer, H.R., 2018. In-situ resource utilization-feasibility of the use of lunar soil to create structures on the moon via sintering based addtive manufacturing technology. Aeronautics and Aerospace, 2, 243-248.

10.15406/aaoaj.2018.02.00056
26 

Frondel, J.W., 1975. Lunar Mineralogy. Wiley-Interscience, New York, USA, p.84-87.

27 

Gharib, N. and Radziszewski, P., 2014. Dust cleaning, transportation and sampling in lunar environment using traveling electric field Proceedings of the International Astronautical Congress, IAC 8, p.5831-5834.

28 

Goldstein, J.I., Axon, H.J., and Yen, C.F., 1972. Metallic particles in Apollo 14 lunar soil. Proc. 3rd Lunar Science Conference. Suppl. 3, Geochimica et Cosmochimica Acta., 1037-1064. M.I.T. Press.

29 

Grossman, K.D., Sakthivel, T.S., Sibille, L., Mantovani, J.G., and Seal, S., 2019. Regolith-derived ferrosilicon as a potential feedstock materials for wire-based additive manufacturing. Advances in Space Reserch, 63, 2212-2219.

10.1016/j.asr.2018.12.002
30 

Gustafson, R., White, B., and Fdler, M., 2011. 2010 field demonstration of the solar carbothermal regolith reduction process to produce oxygen. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. doi:10.2514/6.2011-434

10.2514/6.2011-434
31 

Hu, D., Dolganov, A., Ma, M., Bhattachary, B., Bishop, M.T., and Chen, G.Z. 2018, Development of the fray-farthing- chen cambridge process: towards the sustainable production of titanium and its alloys. The Journal of the Minerals, Metals and Materials Society, 70, 129-137.

10.1007/s11837-017-2664-4
32 

Keller, L.P., Wentworth, S.J., and McKay, D.S., 1998, Surface- correlated nanophase iron metal in lunar soils: petrography and space weathering effects. Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets, p.44-45.

33 

Kobayahi, Y., Sonezaki, H., Endo, R., and Susa, M., 2010. Reduction kinetics of iron oxides in molten lunar soil simulant by graphite. ISIJ International, 50, 35-43.

10.2355/isijinternational.50.35
34 

Landis, G.A., 2007. Materials refining on the Moon. Acta Astronautica, 60, 906-915.

10.1016/j.actaastro.2006.11.004
35 

Lee, S., van Riessen, A., and Chon, C-M, 2016. Benefits of sealed-curing on compressive strength of fly ash-based geopolymers. Materials, 9, 598. doi:10.3390/ma9070598.

10.3390/ma907059828773720PMC5456872
36 

Lee, S., Yang, I., Choi, S., and Park, J., 2018. Application and type of magnetic separator. Journal of Korean Institute of Resources Recycling, 27, 11-22.

37 

Lowman, Jr, P.D., 1972. The geologic evolution of the moon. The Journal of Geology, 80, 125-166.

10.1086/627722
38 

Maxwell, J.A., and Wiik, H.B., 1971. Chemical composition of Apollo 12 lunar samples 12004, 12033, 12051, 12052 and 12065. Earth and Planetary Science Letters, 10, 285-288.

10.1016/0012-821X(71)90032-X
39 

McCullough, E., Jewell, P., and Tukkaraja, P., 2014. Expanding mineral resources: technical considerations for extraterrestrial mining. Earth and Space 2014, doi:10.1061/9780784479179.039.

10.1061/9780784479179.039
40 

McKay, D.S., Carter, J.L., Boles, W.W., Allen, C.C., and Allton, J.H., 1994. JSC-1: A new lunar soil simulant. Engineering, Construction, and Operations in Space IV. American Society of Civil Engineers, 857-866.

41 

McKay, D.S., Heiken, G., Basu, A., Blanford, G., Simon, S., Reedy, R., French, B.M., and Papike, J., 1991. The Lunar Regolith, in The Lunar Sourcebook, Heiken G. H, Vaniman D. T., and French B. M., Eds. Cambridge University Press, New York NY, pp. 285-356.

42 

McLeod, C.L. and Krekeler, M.P.S., 2017. Sources of extraterrestrial rare earth elements: to the moon and beyond. Resources, 6, 40p. doi:10.3390/resources6030040.

10.3390/resources6030040
43 

Meurisse, A., Makaya, A., Willsch, C., and Sperl, M., 2018. Solar 3D printing of lunar regolith. Acta Astronautica, 152, 800-810.

10.1016/j.actaastro.2018.06.063
44 

Meyer, C., 2009. NASA Lunar Petrographic Educational Thin Section Set. https://curator.jsc.nasa.gov/lunar/letss/mineralogy.pdf (accessed on 18 March 2017).

45 

Montes, C., Broussard, K., Gongre, M., Simicevic, N., Mejia, J., Tham, J., Allouche, E., and Davis, G., 2015. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Advances in Space Research, 56, 1212-1221.

10.1016/j.asr.2015.05.044
46 

Nayagam, V. and Sacksteder, K.R. 2006. A vibrofluidized reactor for resource extraction from lunar regolith. AIP Conference Proceedings, 813, 1101-1110.

10.1063/1.2169291
47 

Neal, C.R. and Taylor, L.A., 1989. Metasomatic products of the lunar magma ocean: The role of KREEP dissemination. Geochimica et Cosmochimica Acta, 53, 529-541.

10.1016/0016-7037(89)90403-1
48 

Noble, S., 2009. The lunar regolith. USA: NASA Lunar Petrographic Educational Thin Section Set: 2003. 39p.

49 

O'Leary, B., 1988. Asteroid mining and the moons of Mars. Acta Astronautica, 17, 457-463.

10.1016/0094-5765(88)90059-8
50 

Oh, J., Yoo, K., Bae, M., Kim, S., and Alorro, R.D., 2019. The adsorption behaviors of gold ions in simulated leachate using magnetite. Journal of Korean Society of Mineral and Energy Resources Engineering, 56, 79-85.

10.32390/ksmer.2019.56.1.079
51 

Papike, J.J., Ryder, G., and Shearer, C.K., 1998. Lunar Materials. In Planetary Materials, Reviews in Mineralogy; Papike, J.J.,Ed.; Mineralogical Society of America: Washington, DC, USA, 1998, 36, 5.1-5.23.

52 

Papike, J.J., Simon, S.B., and Laul, J.C., 1982. The lunar regolith: Chemistry, mineralogy and petrology. Reviews of Geophysics, 20, 761-826.

10.1029/RG020i004p00761
53 

Paterson, J.L., 1994. Lunar ISRU: an evolutionary approach. Proceedings of the 4th International Conference on Engineering, Construction and Operations in Space, p.1077-1085.

54 

Rose, W.I. and Durant, A.J., 2009. Fine ash content of explosive eruptions. Journal of Volcanology and Geothermal Research, 186, 32-39.

10.1016/j.jvolgeores.2009.01.010
55 

Sanders, G.B. and Duke, M., 2005. NASA In-Situ Resource Utilization (ISRU) Capability Roadmap Final Report. May 19, 2005, 49p.

56 

Satish, H., Radziszewski, P., and Ouellet, J., 2005, Design issues and challenges in lunar/Martial mining applications. Mining Technology (Trans. Inst. Min. Metall. A), 114, A107-A117.

10.1179/037178405X53917
57 

Schwandt, C., Hamilton, J.A., Fray D.J., and Crawford, I.A., 2012a. The production of oxygen and metal from lunar regolith. Planetary and Space Science, 74, 49-56.

10.1016/j.pss.2012.06.011
58 

Schwandt, C., Hamilton, J.A., Fray D.J., and Crawford, I.A., 2012b. 7 Oxygen from Lunar Regolith. Badescu, V. Ed.: Moon-Perspecrtive Energy and Material Resources, Springer (ISBN978-3-642-27968-3), p.165-187.

10.1007/978-3-642-27969-0_7
59 

Sibille, L., Carpenter, P., Schlagheck, R., and French, R.A., 2005. Lunar regolith simulant materials: recommendations for standardization, production and usage. Marshall Space Flight Center. 138p.

60 

Smith, J.V. and Steele, I.M., 1976. Lunar mineralogy: A heavenly detective story. Part II. American Mineralogist, 61, 1059-1116.

61 

Sohn, 2019. Current status of zinc smelting and recycling, Journal of Korean Institute of Resources Recycling, 28, 30-41.

62 

Spudis, P.D., 2005. The Moon and the new Presidential space vision. Earth, Moon, and Planets, 94, 213-219.

10.1007/s11038-005-9011-4
63 

Stradling, A.W., 1993. The physics of open-gradient dry magnetic separaion. Internal Journal of Mineral Processing, 39, 1-18.

10.1016/0301-7516(93)90048-F
64 

Sun, Y., Yuan, Q., and Xiong, J., 2013. Lunar electrostatic effects and Proection. Journal of Physics: Conference Series, 418, 12-39.

10.1088/1742-6596/418/1/012039
65 

Taylor, L.A., Pieters, C.M., and Britt, D., 2016. Evaluations of lunar regolith simulants. Planetary and Space Science, 126, 1-7.

10.1016/j.pss.2016.04.005
66 

Taylor, L.A., Hill, E., Liu, Y., Park, J., and Bruce, R.W., 2006. Microwave processing apollo soil: Products for a lunar base Earth and Space 2006 - Proceedings of the 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments 2006, 66p.

10.1061/40830(188)66
67 

Wang, K. Tang, Q., Cui, X., He, Y., and Liu, L., 2016. Development of \ near-zero water consumption cement materials via the geopolymerization of tektites and its implication for lunar construction. Scientific Reports, 6. doi:10.1038/srep29659.

10.1038/srep2965927406467PMC4942802
68 

Wioik, H.B., Maxwell, J.A., and Bouvier, J.L., 1973. Chemical composition of some Apollo 14 lunar samples. Earth and Planetary Science Letters, 17, 365-368.

10.1016/0012-821X(73)90201-X
69 

Xia, M. and Sanjayan, J., 2016. Method of formulating geopolymer for 3D printing for construction applications. Materials and Design, 110, 382-390.

10.1016/j.matdes.2016.07.136
70 

Xie, K., Shi, Z., Xu, J., Hu, X., Gao, B., and Wang, Z., 2017. Aluminothermic reduction-molten salt electrolysis using inert anode for oxygen and Al-base alloy extraction from lunar soil simulant. The Journal of the Minerals, Metals and Materials Society, 69, 1963-1969.

10.1007/s11837-017-2478-4
71 

Yazawa, Y., Yamaguchi, A., and Takeda, H., 2012. Lunar Minerals and Their Resource Utilization with Particular Reference to Solar Power Satellite and Potential Roles for Humic substances for Lunar Agriculture. In Moon, Prospective Energy and Material Resources; Badescu, V., Ed.; Springer: New York, NY, USA, 2012, 771p.

10.1007/978-3-642-27969-0_524649131PMC3956248
72 

Yongchun, Z., Shijie, W., Ziyuan, O., Yongliao, Z., Jianzhong, L., Chunlai, L., Xiongyao, L., and Junming, F., 2009. CAS-1 lunar soil simulant. Advances in Space Research, 43, 448-454.

10.1016/j.asr.2008.07.006
73 

Yongquan, L., Liu, J., and Yue, Z., 2009. NAO-1: lunar highland soil simulant development in China. Journal of Aerospace Engineering, 22, 53-57.

10.1061/(ASCE)0893-1321(2009)22:1(53)
74 

Zhang, W., Zhu Z., and Cheng, C.Y., 2011. A literature review of titanium metallurgical processes. Hydrometallurgy, 108, 177-188.

10.1016/j.hydromet.2011.04.005
75 

Zhao Y. and Shadman, F., 1990. Production of oxygen from lunar ilmenite. NASA Space Engineering Research Center for Utilization of Local Planetary Resources; Technical Report, 5p.

Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 56
  • No :6
  • Pages :665-675
  • Received Date :2019. 12. 05
  • Revised Date :2019. 12. 19
  • Accepted Date : 2019. 12. 20