All Issue

2020 Vol.57, Issue 3 Preview Page

General Remarks


June 2020. pp. 309-317
Abstract


References
1 

Aki, K. and Richards, P.G., 2002. Quantitative Seismology (2nd Ed.) Chapter 3, University Science Books, Sausalito, CA, USA.

2 

Borglin, S.E., Moridis, G.J., and Oldenburg, C.M., 2000. Experimental studies of the flow of ferrofluids in porous media, Transport Porous Med., 41, p.61-80.

10.1023/A:1006676931721
3 

Cipolla, C.L., Lolon, E.P., Erdle, J.C., and Rubin. B., 2010. Reservoir modeling in shale-gas reservoirs. SPE Reserv. Eval. Eng., 13(4), p.638-653.

10.2118/125530-PA
4 

Colombo, D., Li, W., Sandoval-Curiel, E., and McNeice, G.W., 2020. Deep-learning electromagnetic monitoring coupled to fluid flow simulators, Geophysics, 85(4), WA1- WA12.

10.1190/geo2019-0428.1
5 

Commer, M. and Newman, G., 2008. New advances in controlled-source electromagnetic inversion, Geophys. J. Int., 172(2), p.513-535.

10.1111/j.1365-246X.2007.03663.x
6 

Coussy, O., 2004. Poromechanics, John Wiley and Sons, Chichester, UK.

10.1002/0470092718
7 

Dean, R.H. and Schmidt, J.H., 2008. Hydraulic fracture predictions with a fully coupled geomechanical reservoir simulation, SPE J., 14(4), p.707-714.

10.2118/116470-PA
8 

Felippa, C.A. and Park, K.C., 1980. Staggered transient analysis procedures for coupled mechanical systems: formulation, Comput. Methods Appl. Mech. Eng. 24(1), p.61-111.

10.1016/0045-7825(80)90040-7
9 

Fisher, K. and Warpinski, N., 2012. Hydraulic fracture-height growth: Real data. SPE Prod. Oper. 27(1), p.8-19.

10.2118/145949-PA
10 

Fjaer, E., Holt, R.M., Horsrud, P., Raaen, A.M., and Risnes, R., 2008. Petroleum Related Rock Mechanics (2nd Ed), Elsevier, Amsterdam, The Netherlands.

11 

Ji, L., Settari, A., and Sullivan, R.B., 2009. A novel hydraulic fracturing model fully coupled with geomechanics and reservoir simulation. SPE J., 14(3), p.423-430.

10.2118/110845-PA
12 

Johnson, R. and Shrallow, J., 2011. Ambiguity in microseismic monitoring, 2011 SEG Annual Meeting, 18-23 September, San Antonio, TX. (SEG-2011-1514).

10.1190/1.3627490
13 

Kargbo, D.M., Wilhelm, R.G., and Campbell, D.J., 2010. Natural gas plays in the Marcellus shale: Challenges and potential opportunities. Environ. Sci. Technol.,44(15), p.5679-5684.

10.1021/es903811p20518558
14 

Kim, J., Um, E.S., Moridis, G.J., 2018. Integrated simulation of vertical fracture propagation induced by water injection and its borehole electromagentic responses in shale gas systems, J. Pet. Sci. Eng., 165, p.13-27.

10.1016/j.petrol.2018.01.024
15 

Kim, J. and Lee, J.Y., 2019. Wellbore stability and possible geomechanical failure in the vicinity of the well during pressurization at the gas hydrate deposit in the Ulleung Basin, The 53rd US Rock Mechanics/Geomechanics Symposium, 24-29 June, New York, NJ, USA. (ARMA- 2019-2011).

16 

Kim, J. and Moridis, G.J., 2015. Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems, Int. J. Rock. Mech. Min., 76, p.127-137.

10.1016/j.ijrmms.2015.02.013
17 

Kim, J., Moridis, G.J., Yang, D., and Rutqvist, J., 2012. Numerical studies on two-way coupled flow and geomechanics in hydrate deposits, SPE J., 17(2), p.485-501.

10.2118/141304-PA
18 

Kim, J., Tchelepi, H.A., and Juanes, R., 2011a. Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16(2), p.249-262.

10.2118/119084-PA
19 

Kim, J., Tchelepi, H.A., and Juanes, R., 2011b. Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Eng., 200(13-16), p.1591-1606.

10.1016/j.cma.2010.12.022
20 

Kim, J., Tchelepi, H.A., and Juanes, R., 2013. Rigorous coupling of geomechanics and multiphase flow with strong capillarity, SPE J., 18(6), p.1591-1606.

10.2118/141268-PA
21 

King, G.E., 2012. Hydraulic fracturing 101: What every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells. SPE Hydraulic Fracturing Technology Conference, 6-8 Feburary, The woodland, TX.

10.2118/152596-MS
22 

Lee, H., Shinn, Y.J., Ong, S.H., Woo, S.W., Park, K.G., Lee, T.J., and Moon, S.W., 2017. Fault reactivation potential of an offshore CO2 storage site, Pohang Basin, South Korea, J. Pet. Sci. Eng., 52, p.427-442.

10.1016/j.petrol.2017.03.014
23 

Lee, H., Yoon, S., Kim, T., Kim, J., Shinn, Y., and Ong, S.H., 2020. Fault reactivation analysis and estimation of maximum sustainable pressure during geological CO2 sequestration at a pilot-scale storage site in SE Korea, J. Pet. Sci. Eng. (under review)

24 

Mikelic, A. and Wheeler, M., 2013. Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, p.455-461.

10.1007/s10596-012-9318-y
25 

Moridis, G.J., Kim, J., Reagan, M.T., and Kim, S., 2014. Feasibility of gas production from a gas hydrate accumulation at the UBGH2-6 site of the Ulleung basin in the Korean East Sea, J. Pet. Sci. Eng., 108, p.180-210.

10.1016/j.petrol.2013.03.002
26 

Nordren, R.P., 1972. Propagation of a vertical hydraulic fracture, SPE J., 12(4), p.306-314.

10.2118/3009-PA
27 

Oh, S., Noh, K., Seol, S.J., and Byun, J., 2019. Cooperative deep learning inversion of CSEM data for salt delineation, Geophysics, 85(4), p.E121-E137.

10.1190/geo2019-0532.1
28 

Oh, S., Noh, K., Yoon, S.J., Seol, S.J., and Byun, J., 2018. Salt delineation from electromagnetic data using convolutional neural networks, IEEE Geosci. Remote S., 16(4), p.519-523.

10.1109/LGRS.2018.2877155
29 

Oldenburg, C., Borglin, S.E., and Moridis, G.J., 2000. Numerical simulation of ferrofluid flow for subsurface environmental applications, Transport Porous Med., 38, p.319-344.

10.1023/A:1006611702281
30 

Osborn, S.G., Vengosh, A., Warner, N.R., and Jackson, R.B., 2011. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing, PNAS, 108(20), p.8172-8176.

10.1073/pnas.110068210821555547PMC3100993
31 

Page, J.C. and Miskimins, J.L., 2009. A comparison of hydraulic and propellant fracture propagation in a shale gas reservoir, J. Can. Petrol. Technol., 48(5), p.26-30.

10.2118/09-05-26
32 

Perkins, T.K. and Kern, L.R., 1961, Widths of hydraulic fractures, J. Petrol. Tech., 13(9), p.937-949.

10.2118/89-PA
33 

Rutqvist, J., Vasco, D.W., and Myer, L., 2010. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformation at In Salah, Int. J. Greenh. Gas Con., 2(2), p.225-230.

10.1016/j.ijggc.2009.10.017
34 

Rutqvist, J., 2012. The geomechanics of CO2 storage in deep sedimentary formations, Geotech. Geol. Eng. 30, p.525-551.

10.1007/s10706-011-9491-0
35 

Rutqvist, J., Birkholzer, J., Cappa, F., and Tsang, C-F., 2007. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis, Energy Convers. Manag., 48(6), p.1798-1807.

10.1016/j.enconman.2007.01.021
36 

Rutqvist, J., Rinaldi, A.P., Cappa, F., and Moridis, G.J., 2013. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs, J. Pet. Sci. Eng., 107, p.31-44.

10.1016/j.petrol.2013.04.023
37 

Um, E.S, Kim, J., Wilt, M., Commer, M., and Kim, S-S., 2019. Finite element analysis of top-casing electric source method for imaging hydraulically active fracture zones, Geophysics, 84(1), p.E23-E35.

10.1190/geo2018-0451.1
38 

Um, E.S., Commer, M., and Newman, G., 2013. Efficient pre-conditioned iterative solution strategies for the electromagnetic diffusion in the earth: Finite-element frequency- domain approach, Geophys. J. Int., 193(3), p.1460-1473.

10.1093/gji/ggt071
39 

Um, E.S., Kim, J., and Wilt, M., 2020. 3D borehole-to-surface and surface electromagnetic modeling and inversion in the presence of steel infrastructure, Geophysics, 85(5), p.1-54.

10.1190/geo2019-0034.1
40 

Vasco, D.W., Rucci, A., Ferretti, A., Novali, F., Bissell, R.C., Ringrose, P.S., Mathieson, A.S., and Wright, I.W., 2010. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide, Geophys. Res. Lett. 37, L03303.

10.1029/2009GL041544
41 

Warpinski, N.R., Kramm, R.C., Heinze, J.R., and Waltman, C.K., 2005. Comparison of single- and dual-array microseismic mapping techniques in the Barnett shale, SPE Annual Technical Conference and Exhibition, 9-12 October, Dallas, TX.

10.2118/95568-MS15872164
42 

White, J.A., Castelletto, N., and Tchelepi, H.A., 2016. Block- partitioned solvers for coupled poromechanics: a unified framework, Comput. Methods Appl. Mech. Eng., 303, p.55-74.

10.1016/j.cma.2016.01.008
43 

Zoback, M.D. and Gorelick, S.M., 2012. Earthquake triggering and large-scale geologic storage of carbon dioxide, PNAS, 109(26), p.10164-10168.

10.1073/pnas.120247310922711814PMC3387039
44 

Zoback, M.D. and Kohli, A.H., 2019. Unconventional Reservoir Geomechanics: Shale Gas, Tight Oil, and Induced Seismicity, Cambridge University Press, Cambridge, UK.

10.1017/9781316091869
45 

Zoback, M.D., 2007. Reservoir Geomechanics, Cambridge University Press, Cambridge, UK.

10.1017/CBO978051158647718163876
46 

Zoback, M.D., Kitasei, S., and Copithorne, B., 2010. Addressing the Environmental Risks from Shale Gas Development, Worldwatch Institute Briefing Paper 1, Worldwatch Institute, Washington DC, USA.

Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 57
  • No :3
  • Pages :309-317
  • Received Date :2020. 06. 12
  • Revised Date :2020. 06. 24
  • Accepted Date : 2020. 06. 25