All Issue

2020 Vol.57, Issue 6 Preview Page

Research Paper

December 2020. pp. 541-553
Alaudah, 2019b, Facies_classification_benchmark, 2019.11.28, cies_classification_benchmark.
Alaudah, Y., Michałowicz, P., Alfarraj, M., and AlRegib, G., 2019a. A machine-learning benchmark for facies classification. Interpretation, 7(3), p.SE175-SE187. 10.1190/INT-2018-0249.1
Bengio, Y., Simard, P., and P. Frasconi., 1994. Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural Networks, 5(2), p.157-166. 10.1109/72.27918118267787
Chaki, S., 2015. Reservoir characterization: A machine learning approach, MS Thesis, Indian Institute of Technology, India, 98p.
Chevitarese, D., Szwarcman, D., Silva, R. M. D., and Brazil, E. V., 2018. Seismic facies segmentation using deep learning. AAPG Annual Convention and Exhibition. Salt Lake City, Utah.
Cho, Y., Jeong, D., and Jun, H., 2020. Semi‐auto horizon tracking guided by strata histograms generated with transdimensional Markov‐chain Monte Carlo. Geophysical Prospecting, 68(5), p.1456-1475. 10.1111/1365-2478.12933
Choi, W.C., Lee, G.H., Cho, S.I., Choi, B.H., and Pyun, S.J., 2020. Fault Detection for Seismic Data Interpretation Based on Machine Learning: Research Trends and Technological Introduction. Geophysics and Geophysical Exploration, 23(2), p.97-114.
dGB Earth Sciences, Seismic interpretation software & services, 2018.
Dramsch, J.S. and Lüthje, M., 2018. Deep-learning seismic facies on state-of-the-art CNN architectures. SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists. p.2036-2040. 10.1190/segam2018-2996783.1
Glorot, X. and Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics, AISTATS, 2010, p.249-256.
Griffith, D.P., Zamanian, S.A., Vila, J., Vial-Aussavy, A., Solum, J., Potter, R.D., and Menapace, F., 2019. Deep learning applied to seismic attribute computation. Interpretation, 7(3), p.SE141-SE150. 10.1190/INT-2018-0227.1
Guillen, P., Larrazabal, G., González, G., Boumber, D., and Vilalta, R., 2015. Supervised learning to detect salt body. SEG Technical Program Expanded Abstracts 2015, Society of Exploration Geophysicists, p.1826-1829. 10.1190/segam2015-5931401.1
He, K., Zhang, X., Ren, S., and Sun, J., 2016a. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, p.770-778. 10.1109/CVPR.2016.9026180094
He, K., Zhang, X., Ren, S., and Sun, J., 2016b. Identity mappings in deep residual networks. In European conference on computer vision. Springer, Cham., p.630-645. 10.1007/978-3-319-46493-0_38
Keynejad, S., Sbar, M.L., and Jhonson, R.A., 2019. Assessment of machine-learning techniques in predicting lithofluid facies logs in hydrocarbon wells. Interpretation, 7(3), p.SF1-SF13. 10.1190/INT-2018-0115.1
Krizhevsky, A., Sutskever, I., and Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, p.1097- 1105.
Kumar, P.C. and Sain, K., 2018. Attribute amalgamation-aiding interpretation of faults from seismic data: An example from Waitara 3D prospect in Taranaki basin off New Zealand. Journal of Applied Geophysics, 159, p.52-68. 10.1016/j.jappgeo.2018.07.023
Noh, H., Hong, S., and Han, B., 2015. Learning deconvolution network for semantic segmentation. Proceedings of the IEEE international conference on computer vision (ICCV), p.1520-1528. 10.1109/ICCV.2015.178
Onajite, E., 2013. Seismic data analysis techniques in hydrocarbon exploration. Elsevier. 256p.
Qian, F., Yin, M., Liu, X.Y., Wang, Y.J., Lu, C., and Hu, G.M., 2018. Unsupervised seismic facies analysis via deep convolutional autoencoders. Geophysics, 83(3), p.A39-A43. 10.1190/geo2017-0524.1
Ronneberger, O., Fischer, P., and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, p.234-241. 10.1007/978-3-319-24574-4_28
Sen, S., Kainkaryam, S., Ong, C., and Sharma, A., 2019, Regularization strategies for deep-learning-based salt model building. Interpretation, 7(4), p.T911-T922. 10.1190/INT-2018-0229.1
Shi, Y., Wu, X., and Fomel, S., 2019, SaltSeg: Automatic 3D salt segmentation using a deep convolutional neural network. Interpretation, 7(3), p.SE113-SE122. 10.1190/INT-2018-0235.1
Silva, R.M., Baroni, L., Ferreira, R.S., Civitarese, D., Szwarcman, D., and Brazil, E.V., 2019. Netherlands dataset: A new public dataset for machine learning in seismic interpretation. arXiv preprint arXiv:1904.00770.
Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Smith, R., Mukerji, T., and Lupo, T., 2019. Correlating geologic and seismic data with unconventional resource production curves using machine learning. Geophysics, 84(2), p.O39-O47. 10.1190/geo2018-0202.1
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., and Rabinovich, A., 2015. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition, p.1-9. 10.1109/CVPR.2015.7298594
Tian, X. and Daigle, H., 2018. Machine-learning-based object detection in images for reservoir characterization: A case study of fracture detection in shales. The Leading Edge, 37(6), p.435-442. 10.1190/tle37060435.1
Waldeland, A. and A. Solberg, 2016. 3D Attributes and Classification of Salt Bodies on Unlabelled Datasets. 78th EAGE Conference and Exhibition 2016, EAGE Publications BV. 10.3997/2214-4609.201600880
Wrona, T., Pan, I., Gawthorpe, R.L., and Fossen, H., 2018. Seismic facies analysis using machine learning. Geophysics, 83(5), p.O83-O95. 10.1190/geo2017-0595.1
Xiong, W., Ji, X., Ma, Y., Wang, Y., ALBinHassan, N.M., Ali, M.N., and Luo, Y., 2018. Seismic fault detection with convolutional neural network. Geophysics, 83(5), p.O97-O103. 10.1190/geo2017-0666.1
Yi, H.U., 2019, Case Analysis of Applications for Deep Learning Technology in the Mining Industry. Journal of the Korean Society of Mineral and Energy Resources Engineers, 56(5), p.435-446. 10.32390/ksmer.2019.56.5.435
Yu, F. and Koltun, V., 2015. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122.
Zhang, C., Frogner, C., Araya-Polo, M., and Hohl, D., 2014. Machine-learning based automated fault detection in seismic traces. 76th EAGE Conference and Exhibition 2014, European Association of Geoscientists & Engineers, 2014(1), p.1-5. 10.3997/2214-4609.20141500
Zhang, W., Lu, X., Gu, Y., Liu, Y., Meng, X., and Li, J., 2019. A Robust Iris Segmentation Scheme Based on Improved U-Net. IEEE Access, 7, p.85082-85089. 10.1109/ACCESS.2019.2924464
Zhang, Z., Liu, Q., abd Wang, Y., 2018. Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters, 15(5), p.749-753. 10.1109/LGRS.2018.2802944
Zhao, T., 2018a. Seismic facies classification using different deep convolutional neural networks. SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, p.2046-2050. 10.1190/segam2018-2997085.1
Zhao, T., Li, F., and Marfurt, K.J., 2018b. Seismic attribute selection for unsupervised seismic facies analysis using user-guided data-adaptive weights. Geophysics, 83(2), p.O31-O44. 10.1190/geo2017-0192.1
Zhou, X. Y. and Yang, G. Z., 2019. Normalization in training U-Net for 2-D biomedical semantic segmentation. IEEE Robotics and Automation Letters, 4(2), p.1792-1799. 10.1109/LRA.2019.2896518
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 57
  • No :6
  • Pages :541-553
  • Received Date :2020. 09. 22
  • Revised Date :2020. 11. 20
  • Accepted Date : 2020. 12. 22