All Issue

2019 Vol.56, Issue 6 Preview Page

Research Paper

December 2019. pp. 639-644
Abstract


References
1 

Dirichlet, L.G., 1850. Uber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J. Reine Angew. Math., 40, 209-227.

10.1515/crll.1850.40.209
2 

Du, Q., Faber, V., and Gunzburger, M., 1999. Centroidal Voronoi tessellations: applications and algorithms. SIAM Review, 41, 637-676.

10.1137/S0036144599352836
3 

Du, Q., Gunzburger, M.D., and Ju, L., 2003. Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere. Comput. Methods Appl. Mech. Eng., 192(35-36), 3933-3957.

10.1016/S0045-7825(03)00394-3
4 

Du, Q. and Emelianenko, M., 2006. Acceleration schemes for computing centroidal Voronoi tessellations. Numer. Linear Algebra Appl., 13(2-3), 173-192.

10.1002/nla.476
5 

Du, Q., Gunzburger, M., and Ju, L., 2010. Advances in Studies and Applications of Centroidal Voronoi Tessellations, Numer. Math. Theor. Meth. Appl., 3(2), 119-142.

10.4208/nmtma.2010.32s.1
6 

Fleisher, P.E., 1964. Sufficient conditions for achieving minimum distortion in a quantizer. IEEE Int. Conv. Rec., 104-111.

7 

Gersho, A. and Gray, R.M., 1992. Vector Quantization and Signal Compression, Kluwer Academic.

10.1007/978-1-4615-3626-0
8 

Hateley, J.C., Wei, H., and Chen, L., 2015. Fast methods for computing centroidal Voronoi tessellations. J. Sci. Comput., 63(1), 185-212.

10.1007/s10915-014-9894-1
9 

Haukwa, C., 1998. AMESH A mesh creating program for the integral finite difference method: A User's Manual. Lawrence Berkeley National Laboratory, Berkeley, California, 54p.

10.2172/892927
10 

Ingersoll, L.R. and Plass, H.J., 1948. Theory of the Ground Pipe Heat Source for the Heat Pump, ASHVE Trans., 47, 339-348.

11 

Ingersoll, L.R., Adler, F.T., Plass, H.J., and Ingersoll, A.C., 1950. Theory of earth heat exchangers for the heat pump, ASHVE Trans., 56, 167-188.

12 

Jung, Y., Pau, G.S.H., Finsterle, S., Pollyea, R.M., 2017. TOUGH3: A new efficient version of the TOUGH suite of multiphase flow and transport simulators, Comput. Geosci., 108, 2-7.

10.1016/j.cageo.2016.09.009
13 

Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., and Wu, A.Y., 2002. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell., 24, 881-892.

10.1109/TPAMI.2002.1017616
14 

Kavanaugh, S.P. and Rafferty, K., 1997. Ground-Source Heat Pumps: Design of Geothermal Systems for Commercial and Institutional Buildings, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA.

15 

Kieffer, J., 1983. Uniqueness of locally optimal quantizer for log-concave density and convex error weighting function. IEEE Trans. Inf. Theory, 29(1), 42-47.

10.1109/TIT.1983.1056622
16 

Kim, S.K., Bae, G.O., Lee, K.K., and Song, Y., 2010. Field-scale evaluation of the design of borehole heat exchangers for the use of shallow geothermal energy. Energy, 35, 491-500.

10.1016/j.energy.2009.10.003
17 

Kim, S.K., Bae, G.O., and Lee, K.K., 2015. Improving accuracy and flexibility of numerical simulation of geothermal heat pump systems using Voronoi grid refinement approach. Geosci. J., 19(3), 527-535.

10.1007/s12303-014-0061-3
18 

Narasimhan, T.N. and Witherspoon, P.A., 1976. An Integrated Finite Difference Method for Analyzing Fluid Flow in Porous Media, Water Resour. Res., 12(1), 57-64.

10.1029/WR012i001p00057
19 

Nocedal, J. and Wright, S., 2006. Numerical optimization. Springer Science & Business Media, 664p.

20 

Penrod, E.B., 1954. Sizing Earth Heat Pumps, Refr. Engng., 62, 57-61.

21 

Pruess, K., Oldenburg, C., and Moridis, G., 1999. TOUGH2 User's Guide, Version 2.0, Lawrence Berkeley National Laboratory, Berkeley, California, 197p.

10.2172/751729
22 

Ringler, T., Ju, L., and Gunzburger, M., 2008. A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations. Ocean Dyn., 58(5-6), 475- 498.

10.1007/s10236-008-0157-2
23 

Signorelli, S., 2004. Geoscientific investigations for the use of shallow low-enthalpy systems, for the degree of Doctor of Science, Swiss Federal Institute of Technology Zurich, Switzerland.

24 

Tu, J., Yeoh, G.H., and Liu, C., 2018. Computational fluid dynamics: a practical approach. Butterworth-Heinemann, 478p.

25 

Voronoi, G., 1908. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. Reine Angew. Math., 133, 97-178.

10.1515/crll.1908.133.97
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 56
  • No :6
  • Pages :639-644
  • Received Date :2019. 11. 28
  • Revised Date :2019. 12. 09
  • Accepted Date : 2019. 12. 20