All Issue

2020 Vol.57, Issue 3 Preview Page

Technical Report


June 2020. pp. 275-285
Abstract


References
1 

Borja, D., Lee, E., Silva, R.A., Kim, H., Park, J.H., and Kim, H., 2015. Column bioleaching of arsenic from mine tailings using a mixed acidophilic culture: A technical feasibility assessment. J. Kor. Inst. Resources Recycling, 24(6), p.69-77.

10.7844/kirr.2015.24.6.69
2 

Couillard, D. and Zhu, S., 1991. bacterial leaching of heavy metals from sewage sludge for agricultural application. Water Air Soil Pollut., 63(1-2), p.67-80.

10.1007/BF00475622
3 

Feng, G., Xie, T., Wang, X., Bai, J., Tang, L., Zhao, H., Wei, W., Wang, M., and Zhao, Y., 2018. Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiol., 18(1), p.11.

10.1186/s12866-018-1152-529439665PMC5812035
4 

Geng, H., Wang, F., Yan, C., Tian, Z., Chen, H., Zhou, B., Yuan, R., and Yao, J., 2020. Leaching behavior of metals from iron tailings under varying pH and low molecular- weight organic acids. J. Hazard. Mater., 383, p.121136.

10.1016/j.jhazmat.2019.12113631525690
5 

Gupta, A., Dutta, A., Sarkar, J., Paul, D., Panigrahi, M.K., and Sar, P., 2017. Metagenomic exploration of microbial community in mine tailings of Malanjkhand copper project, India. Genom. Data, 12, p.11-13.

10.1016/j.gdata.2017.02.00428239550PMC5315440
6 

Han, H.-J. and Lee, J.-U., 2015. Experimental study on bioleaching of paddy soil in the vicinity of refinery site contaminated with copper, lead, and arsenic using sulfur- oxidizing bacteria. Geosys. Eng., 18(2), p.79-84.

10.1080/12269328.2014.1002634
7 

Han, H.-J., Lee, J.-U., and Chon, H.-T., 2011. Comparison of bioleaching of heavy metals and arsenic from contaminated soil in the vicinity of a refinery using sulfur-oxidizing and iron-oxidizing bacteria. J. Korean Soc. Geosys. Eng., 48(6), p.713-722.

8 

Han, H.-J., Lee, J.-U., Ko, M.-S., Choi, N.-C., Kwon, Y.-H., Kim, B.-K., and Chon, H.-T., 2009. Bioleaching of heavy metals from shooting range soil using a sulfur-oxidizing bacteria Acidithiobacillus thiooxidans. Econ. Environ. Geol., 42(5), p.457-469.

9 

Kedziorek, M.A., Dupuy, A., Bourg, A.C., and Compère, F., 1998. Leaching of Cd and Pb from a polluted soil during the percolation of EDTA: laboratory column experiments modeled with a non-equilibrium solubilization step. Environ. Sci. Technol., 32(11), p.1609-1614.

10.1021/es970708m
10 

Kim, Y.-S., Chon, H.-T., and Lee, J.-U., 2011. Bioleaching of heavy metals and arsenic in contaminated soil by microbiological sulfur oxidation. J. Korean Soc. Geosys. Eng., 48(3), p.294-308.

11 

Ko, M.-S., Park, H.-S., and Lee, J.-U., 2009. Bioleaching of heavy metals from tailings in abandoned Au-Ag mines using sulfur-oxidizing bacterium Acidithiobacillus thiooxidans. J. Korean Soc. Geosys. Eng., 46(2), p.239-251.

12 

Ko, M.-S., Park, H.-S., Kim, K.-W., and Lee, J.-U., 2013. The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil. Environ. Geochem. Health, 35(6), p.727-733.

10.1007/s10653-013-9530-223709230
13 

Lee, J.-U., Kim, S.-M., Kim, K.-W., and Kim, I.S, 2005. Microbial removal of uranium in uranium-bearing black shale. Chemosphere, 59(1), p.147-154.

10.1016/j.chemosphere.2004.10.00615698655
14 

Lee, K.Y., Kim, K.R., Lee, B.T., Kim, J.Y., Kim, K.W., and Kim, S.O., 2009. Evaluation on the feasibility of microbially enhanced electrokinetic removal of multiple heavy metals from tailing soil. Sep. Sci. Technol., 44(10), p.2322-2340.

10.1080/01496390902983653
15 

Mardanov, A.V., Beletsky, A.V., Ivasenko, D.A., Karnachuk, O.V., and Ravin, N.V., 2017. Metagenome sequence of a microbial community from the gold mine tailings in the Kuzbass area, Russia. Genome Announc., 5(49), e01355-17.

10.1128/genomeA.01355-1729217798PMC5721143
16 

Nguyen, V.K. and Lee, J.-U., 2015. A comparison of microbial leaching and chemical leaching of arsenic and heavy metals from mine tailings. Biotechnol. Bioprocess. Eng., 20(1), p.91-99.

10.1007/s12257-014-0223-1
17 

Park, H.-S., Lee, J.-U., and Ahn, J.-W., 2007. The effects of Acidithiobacillus ferrooxidans on the leaching of cobalt and strontium adsorbed onto soil particles. Environ. Geochem. Health, 29(4), p.303-312.

10.1007/s10653-007-9095-z17508258
18 

Seh-Bardan, B.J., Othman, R., Wahid, S.A., Husin, A., and Sadegh-Zadeh, F., 2012. Column bioleaching of arsenic and heavy metals from gold mine tailings by Aspergillus fumigatus. CLEAN Soil Air Water, 40(6), p.607-614.

10.1002/clen.201000604
19 

Tunsu, C., Menard, Y., Eriksen, D.Ø., Ekberg, C., and Petranikova, M., 2019. Recovery of critical materials from mine tailings: A comparative study of the solvent extraction of rare earths using acidic, solvating and mixed extractant systems. J. Clean. Prod., 218, p.425-437.

10.1016/j.jclepro.2019.01.312
20 

Tyagi, R.D. and Couillard, D., 1989, Bacterial leaching of metals from sludge, In: Cheremisinoff, P.E. (Ed), Encyclopedia of Environmental Control Technology, Vol. 3, Gulf Publishing Co., Houston, p.557-591.

21 

Wasay, S.A., Barrington, S.F., and Tokunaga, S., 1998. Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environ. Technol., 19(4), p.369-379.

10.1080/09593331908616692
22 

Zhang, X., Niu, J., Liang, Y., Liu, X., and Yin, H., 2016. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. BMC Genet., 17(1), p.21.

10.1186/s12863-016-0330-426781463PMC4717592
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 57
  • No :3
  • Pages :275-285
  • Received Date :2020. 06. 05
  • Revised Date :2020. 06. 23
  • Accepted Date : 2020. 06. 25