All Issue

2025 Vol.62, Issue 5 Preview Page

General Remarks

31 October 2025. pp. 598-611
Abstract
References
1

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane´, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Vie´gas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng X., 2016. TensorFlow: Large- Scale Machine Learning on Heterogeneous Systems, arXiv:1603.04467.

2

Baek, S., Bacon, D.H., and Huerta, N.J., 2023. Enabling site-specific well leakage risk estimation during geologic carbon sequestration using a modular deep-learning-based wellbore leakage model, International Journal of Greenhouse Gas Control, 126, 103903.

10.1016/j.ijggc.2023.103903
3

Baek, S., Hibbard, L, Mitchell, N, Appriou, D, Dilmore, R., and Mamud, M., 2025. Deep-learning-enhanced assessment of wellbore barrier effectiveness in geologic storage systems with intermediate aquifers, International Journal of Greenhouse Gas Control, 147, 104487.

10.1016/j.ijggc.2025.104487
4

Bahk, J.J., Kim, G.Y., Chun, J.H., Kim, J.H., Lee, J., Ryu, B.J., Lee, J.H., and Son, B.K., 2013. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea, Marine and Petroleum Geology, 47, p.30-42.

10.1016/j.marpetgeo.2013.05.007
5

Bousquet, O. and Elisseeff, A., 2002. Stability and generalization, Journal of Machine Learning Research, 2, 499-526.

6

Chaikine, I.A. and Gates, I.D., 2021. A machine learning model for predicting multi-stage horizontal well production, Journal of Petroleum Science and Engineering, 198, 108133.

10.1016/j.petrol.2020.108133
7

Dauphin, Y.N., Fan, A., Auli, M., and Grangier, D., 2017. Language Modeling with Gated Convolutional Networks. D. Precup and Y.W. Teh, eds., Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, p.933-941, PMLR.

8

Goodfellow, I., Bengio, Y., and Courville, A., 2016. Deep Learning, MIT Press, Cambridge, MA, USA, 775p.

9

Ioffe, S. and Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

10

Ji, M., Kwon, S., Kim, M., Kim, S., and Min, B., 2022. Generation of Synthetic Compressional Wave Velocity Based on Deep Learning: A Case Study of Ulleung Basin Gas Hydrate in the Republic of Korea, Applied Sciences, 12(17).

10.3390/app12178775
11

Kim, A.R., Kim, H.S., Cho, G.C., and Lee, J.Y., 2017. Estimation of model parameters and properties for numerical simulation on geomechanical stability of gas hydrate production in the Ulleung Basin, East Sea, Korea, Quaternary International, 459, p.55-68.

10.1016/j.quaint.2017.09.028
12

Kim, H.S., Cho, G.C., Lee, J., and Kim, S.J., 2013. Geotechnical and geophysical properties of deep marine fine-grained sediments recovered during the second Ulleung Basin Gas Hydrate expedition, East Sea, Korea, Marine and Petroleum Geology, 47, p.56-65.

10.1016/j.marpetgeo.2013.05.009
13

Kim, J. and Lee, J.Y., 2024. Sequential formulation of all-way coupled finite strain thermoporomechanics for largely deformable gas hydrate deposits, International Journal for Numerical and Analytical Methods in Geomechanics, 48, p.1613-1633.

10.1002/nag.3696
14

Kim, J., Moridis, G.J., and Rutqvist, J., 2012a. Coupled flow and geomechanical analysis for gas production in the Prudhoe Bay Unit L-106 well Unit C gas hydrate deposit in Alaska, Journal of Petroleum Science and Engineering,92-93, p.143-157.

10.1016/j.petrol.2012.04.012
15

Kim, J., Moridis, G.J., Yang, D., and Rutqvist, J., 2012b. Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits, SPE Journal, 17(2), p.485-501.

10.2118/141304-PA
16

Lee, J., Kim, G.Y., Kang, N., Yi, B.Y., Jung, J., Im, J.H., Son, B.K., Bahk, J.J., Chun, J.H., Ryu, B.J., and Kim, D., 2013a. Phys- ical properties of sediments from the Ulleung Basin, East Sea: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea (Korea), Marine and Petroleum Geology, 47, p.43-55.

10.1016/j.marpetgeo.2013.05.017
17

Lee, J.S., Lee, J., Kim, Y., and Lee, C., 2013b. Stress-dependent and strength properties of gas hydrate-bearing marine sediments from the Ulleung Basin, East Sea, Korea, Marine and Petroleum Geology, 47, p.66-76.

10.1016/j.marpetgeo.2013.04.006
18

Lee, K., Lim, J., Yoon, D., and Jung, H., 2019. Prediction of shale-gas production at duvernay formation using deep-learning algorithm, SPE Journal, 24(06), p.2423-2437.

10.2118/195698-PA
19

Lee, T., Lee, J., Ahn, T., and Son, H., 2021. Numerical simulation of gas hydrate production using the cyclic depressurization method in the Ulleung Basin of the Korea east sea, Applied Sciences, 11, 9748.

10.3390/app11209748
20

Lundberg, S. and Lee, S.I., 2017. A Unified Approach to Interpreting Model Predictions.

21

Luo, P., Wang, X., Shao, W., and Peng, Z., 2019. Towards Understanding Regularization in Batch Normalization, arXiv:1809.00846.

22

Malhotra, P., Vig, L., Shroff, G., Agarwal, P., et al. 2015. Long short term memory networks for anomaly detection in time series, Proceedings, 89, p.89-94.

23

Moridis, G.J., 2003. Numerical studies of gas production from methane hydrates, SPE Journal, 8(4), p.359-370.

10.2118/87330-PA
24

Moridis, G.J., Kim, J., Reagan, M.T., and Kim, S.J., 2013. Feasibility of gas production from a gas hydrate accumulation at the UBGH2-6 site of the Ulleung Basin in the Korean East Sea, Journal of Petroleum Science and Engineering, 108, p.180-210.

10.1016/j.petrol.2013.03.002
25

Moridis, G.J., Kowalsky, M.B., and Pruess, K., 2008. TOUGH+HYDRATE v1.0 User’s Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media. Report LBNL-00149E, Lawrence Berkeley National Laboratory, Berkeley, CA.

10.2172/927149
26

Nagao, M., Yao, C., Onishi, T., Chen, H., Datta-Gupta, A., and Mishra, S., 2024. An efficient deep learning-based workflow for CO2 plume imaging considering model uncertainties with distributed pressure and temperature measurements, International Journal of Greenhouse Gas Control, 132, 104066.

10.1016/j.ijggc.2024.104066
27

Park, G., Kwon, S., Ji, M., Min, B., Nguyen, X.H., Kim, K.H., Kim, S., and Lee, K., 2021. A review on deep learning applications in logging data to model gas-hydrate-bearing sediments, Journal of the Korean Society of Mineral and Energy Resources Engineers, 58(2), p.161-178.

10.32390/ksmer.2021.58.2.161
28

Park, S.Y., Son, B.K., Choi, J., Jin, H., and Lee, K., 2022. Application of machine learning to quantification of mineral composition on gas hydrate-bearing sediments, Ulleung Basin, Korea, Journal of Petroleum Science and Engineering, 209, 109840.

10.1016/j.petrol.2021.109840
29

Patel, G.S. and Jana, A.K., 2024. Machine-Learning-Based prediction of gas hydrate dynamics: a comparison with a funda- mental model against experimental data, Energy & Fuels, 38(17), p.16272-16285.

10.1021/acs.energyfuels.4c02271
30

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., 2011. Scikit-learn: machine learning in python, Journal of Machine Learning Research, 12, p.2825-2830.

31

Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., and Cottrell, G., 2017. A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction.

10.24963/ijcai.2017/366
32

Rutqvist, J. and Moridis, G.J., 2009. Numerical studies on the geomechanical stability of hydrate-bearing sediments, SPE Journal, 14(2), p.267-282.

10.2118/126129-PA
33

Rutqvist, J., Moridis, G., Grover, T., and Collett, T., 2009. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production, Journal of Petroleum Science and Engineering, 67, p.1-12.

10.1016/j.petrol.2009.02.013
34

Sak, H., Senior, A.W., and Beaufays, F., 2014. Long short-term memory recurrent neural network architectures for large scale acoustic modeling, INTERSPEECH, p.338-342.

10.21437/Interspeech.2014-80
35

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A., 2019. How Does Batch Normalization Help Optimization?, arXIv:1805.11604.

36

Sarkar, P., Yoon, S., Kim, J., Baek, S., Sun, A., and Yoon, H., 2025. Surrogate models for development of unconventional shale reservoirs by an integrated numerical approach of hydraulic fracturing, flow and geomechanics, and machine learning, Ge-omechanics for Energy and the Environment,38, 100691.

10.1016/j.gete.2025.100691
37

Wang, L. and Sun, A., 2020. Well Spacing Optimization for Permian Basin Based on Integrated Hydraulic Fracturing, Reser- voir Simulation, and Machine Learning Study. Proceedings of the 8th Unconventional Resources Technology Conference, American Association of Petroleum Geologists.

10.15530/urtec-2020-3104
38

White, M.D., Kneafsey, T., Seol, Y., Uchida, S., Lin, J., Myshakin, E., Gai, X., Gupta, S., Reagan, M., Queiruga, A., and Kimoto, S., 2020. An international code comparison study on coupled thermal, hydrologic and geomechanical processes of natural gas hydrate-bearing sediments, Marine and Petroleum Geology, 120, 104566.

10.1016/j.marpetgeo.2020.104566
39

Wu, H. and Li, C., 2025. The logging identification of gas hydrate occurrence state based on deep learning, Geoenergy Science and Engineering, 255, 214083.

10.1016/j.geoen.2025.214083
40

Yoon, H., Yoon, S., Lee, J., and Kim, J., 2021. Multiple porosity model of a heterogeneous layered gas hydrate deposit in Ulleung Basin, East Sea, Korea: A study on depressurization strategies, reservoir geomechanical response, and wellbore stability, Journal of Natural Gas Science and Engineering, 96, 104321.

10.1016/j.jngse.2021.104321
41

Yoon, H.C., Kim, J., Um, E.S., and Lee, J.Y., 2022. Integration of Electromagnetic Geophysics Forward Simulation in Coupled Flow and Geomechanics for Monitoring a Gas Hydrate Deposit Located in the Ulleung Basin, East Sea, Korea, Energies, 15, 3823.

10.3390/en15103823
42

Yoon, S., Yoon, H.C., Kim, J., and Lee, J.Y., 2024. The role of layer heterogeneity on productivity, geomechanical responses, and wellbore stability of a marine gas hydrate deposit in South Korea, Energy & Fuels, 38, p.11662-11674.

10.1021/acs.energyfuels.4c00557
43

Zhang, J., Moridis, G., and Blasingame, T., 2023. Effect of geomechanics and of grid discretization on the predictions of production from natural hydrate deposits and of the associated geomechanical system response, Gas Science and Engineering, 112, 204942.

10.1016/j.jgsce.2023.204942
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 62
  • No :5
  • Pages :598-611
  • Received Date : 2025-09-19
  • Revised Date : 2025-10-20
  • Accepted Date : 2025-10-24