General Remarks
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane´, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Vie´gas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng X., 2016. TensorFlow: Large- Scale Machine Learning on Heterogeneous Systems, arXiv:1603.04467.
Baek, S., Bacon, D.H., and Huerta, N.J., 2023. Enabling site-specific well leakage risk estimation during geologic carbon sequestration using a modular deep-learning-based wellbore leakage model, International Journal of Greenhouse Gas Control, 126, 103903.
10.1016/j.ijggc.2023.103903Baek, S., Hibbard, L, Mitchell, N, Appriou, D, Dilmore, R., and Mamud, M., 2025. Deep-learning-enhanced assessment of wellbore barrier effectiveness in geologic storage systems with intermediate aquifers, International Journal of Greenhouse Gas Control, 147, 104487.
10.1016/j.ijggc.2025.104487Bahk, J.J., Kim, G.Y., Chun, J.H., Kim, J.H., Lee, J., Ryu, B.J., Lee, J.H., and Son, B.K., 2013. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea, Marine and Petroleum Geology, 47, p.30-42.
10.1016/j.marpetgeo.2013.05.007Bousquet, O. and Elisseeff, A., 2002. Stability and generalization, Journal of Machine Learning Research, 2, 499-526.
Chaikine, I.A. and Gates, I.D., 2021. A machine learning model for predicting multi-stage horizontal well production, Journal of Petroleum Science and Engineering, 198, 108133.
10.1016/j.petrol.2020.108133Dauphin, Y.N., Fan, A., Auli, M., and Grangier, D., 2017. Language Modeling with Gated Convolutional Networks. D. Precup and Y.W. Teh, eds., Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, p.933-941, PMLR.
Goodfellow, I., Bengio, Y., and Courville, A., 2016. Deep Learning, MIT Press, Cambridge, MA, USA, 775p.
Ioffe, S. and Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.
Ji, M., Kwon, S., Kim, M., Kim, S., and Min, B., 2022. Generation of Synthetic Compressional Wave Velocity Based on Deep Learning: A Case Study of Ulleung Basin Gas Hydrate in the Republic of Korea, Applied Sciences, 12(17).
10.3390/app12178775Kim, A.R., Kim, H.S., Cho, G.C., and Lee, J.Y., 2017. Estimation of model parameters and properties for numerical simulation on geomechanical stability of gas hydrate production in the Ulleung Basin, East Sea, Korea, Quaternary International, 459, p.55-68.
10.1016/j.quaint.2017.09.028Kim, H.S., Cho, G.C., Lee, J., and Kim, S.J., 2013. Geotechnical and geophysical properties of deep marine fine-grained sediments recovered during the second Ulleung Basin Gas Hydrate expedition, East Sea, Korea, Marine and Petroleum Geology, 47, p.56-65.
10.1016/j.marpetgeo.2013.05.009Kim, J. and Lee, J.Y., 2024. Sequential formulation of all-way coupled finite strain thermoporomechanics for largely deformable gas hydrate deposits, International Journal for Numerical and Analytical Methods in Geomechanics, 48, p.1613-1633.
10.1002/nag.3696Kim, J., Moridis, G.J., and Rutqvist, J., 2012a. Coupled flow and geomechanical analysis for gas production in the Prudhoe Bay Unit L-106 well Unit C gas hydrate deposit in Alaska, Journal of Petroleum Science and Engineering,92-93, p.143-157.
10.1016/j.petrol.2012.04.012Kim, J., Moridis, G.J., Yang, D., and Rutqvist, J., 2012b. Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits, SPE Journal, 17(2), p.485-501.
10.2118/141304-PALee, J., Kim, G.Y., Kang, N., Yi, B.Y., Jung, J., Im, J.H., Son, B.K., Bahk, J.J., Chun, J.H., Ryu, B.J., and Kim, D., 2013a. Phys- ical properties of sediments from the Ulleung Basin, East Sea: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea (Korea), Marine and Petroleum Geology, 47, p.43-55.
10.1016/j.marpetgeo.2013.05.017Lee, J.S., Lee, J., Kim, Y., and Lee, C., 2013b. Stress-dependent and strength properties of gas hydrate-bearing marine sediments from the Ulleung Basin, East Sea, Korea, Marine and Petroleum Geology, 47, p.66-76.
10.1016/j.marpetgeo.2013.04.006Lee, K., Lim, J., Yoon, D., and Jung, H., 2019. Prediction of shale-gas production at duvernay formation using deep-learning algorithm, SPE Journal, 24(06), p.2423-2437.
10.2118/195698-PALee, T., Lee, J., Ahn, T., and Son, H., 2021. Numerical simulation of gas hydrate production using the cyclic depressurization method in the Ulleung Basin of the Korea east sea, Applied Sciences, 11, 9748.
10.3390/app11209748Luo, P., Wang, X., Shao, W., and Peng, Z., 2019. Towards Understanding Regularization in Batch Normalization, arXiv:1809.00846.
Malhotra, P., Vig, L., Shroff, G., Agarwal, P., et al. 2015. Long short term memory networks for anomaly detection in time series, Proceedings, 89, p.89-94.
Moridis, G.J., 2003. Numerical studies of gas production from methane hydrates, SPE Journal, 8(4), p.359-370.
10.2118/87330-PAMoridis, G.J., Kim, J., Reagan, M.T., and Kim, S.J., 2013. Feasibility of gas production from a gas hydrate accumulation at the UBGH2-6 site of the Ulleung Basin in the Korean East Sea, Journal of Petroleum Science and Engineering, 108, p.180-210.
10.1016/j.petrol.2013.03.002Moridis, G.J., Kowalsky, M.B., and Pruess, K., 2008. TOUGH+HYDRATE v1.0 User’s Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media. Report LBNL-00149E, Lawrence Berkeley National Laboratory, Berkeley, CA.
10.2172/927149Nagao, M., Yao, C., Onishi, T., Chen, H., Datta-Gupta, A., and Mishra, S., 2024. An efficient deep learning-based workflow for CO2 plume imaging considering model uncertainties with distributed pressure and temperature measurements, International Journal of Greenhouse Gas Control, 132, 104066.
10.1016/j.ijggc.2024.104066Park, G., Kwon, S., Ji, M., Min, B., Nguyen, X.H., Kim, K.H., Kim, S., and Lee, K., 2021. A review on deep learning applications in logging data to model gas-hydrate-bearing sediments, Journal of the Korean Society of Mineral and Energy Resources Engineers, 58(2), p.161-178.
10.32390/ksmer.2021.58.2.161Park, S.Y., Son, B.K., Choi, J., Jin, H., and Lee, K., 2022. Application of machine learning to quantification of mineral composition on gas hydrate-bearing sediments, Ulleung Basin, Korea, Journal of Petroleum Science and Engineering, 209, 109840.
10.1016/j.petrol.2021.109840Patel, G.S. and Jana, A.K., 2024. Machine-Learning-Based prediction of gas hydrate dynamics: a comparison with a funda- mental model against experimental data, Energy & Fuels, 38(17), p.16272-16285.
10.1021/acs.energyfuels.4c02271Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., 2011. Scikit-learn: machine learning in python, Journal of Machine Learning Research, 12, p.2825-2830.
Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., and Cottrell, G., 2017. A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction.
10.24963/ijcai.2017/366Rutqvist, J. and Moridis, G.J., 2009. Numerical studies on the geomechanical stability of hydrate-bearing sediments, SPE Journal, 14(2), p.267-282.
10.2118/126129-PARutqvist, J., Moridis, G., Grover, T., and Collett, T., 2009. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production, Journal of Petroleum Science and Engineering, 67, p.1-12.
10.1016/j.petrol.2009.02.013Sak, H., Senior, A.W., and Beaufays, F., 2014. Long short-term memory recurrent neural network architectures for large scale acoustic modeling, INTERSPEECH, p.338-342.
10.21437/Interspeech.2014-80Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A., 2019. How Does Batch Normalization Help Optimization?, arXIv:1805.11604.
Sarkar, P., Yoon, S., Kim, J., Baek, S., Sun, A., and Yoon, H., 2025. Surrogate models for development of unconventional shale reservoirs by an integrated numerical approach of hydraulic fracturing, flow and geomechanics, and machine learning, Ge-omechanics for Energy and the Environment,38, 100691.
10.1016/j.gete.2025.100691Wang, L. and Sun, A., 2020. Well Spacing Optimization for Permian Basin Based on Integrated Hydraulic Fracturing, Reser- voir Simulation, and Machine Learning Study. Proceedings of the 8th Unconventional Resources Technology Conference, American Association of Petroleum Geologists.
10.15530/urtec-2020-3104White, M.D., Kneafsey, T., Seol, Y., Uchida, S., Lin, J., Myshakin, E., Gai, X., Gupta, S., Reagan, M., Queiruga, A., and Kimoto, S., 2020. An international code comparison study on coupled thermal, hydrologic and geomechanical processes of natural gas hydrate-bearing sediments, Marine and Petroleum Geology, 120, 104566.
10.1016/j.marpetgeo.2020.104566Wu, H. and Li, C., 2025. The logging identification of gas hydrate occurrence state based on deep learning, Geoenergy Science and Engineering, 255, 214083.
10.1016/j.geoen.2025.214083Yoon, H., Yoon, S., Lee, J., and Kim, J., 2021. Multiple porosity model of a heterogeneous layered gas hydrate deposit in Ulleung Basin, East Sea, Korea: A study on depressurization strategies, reservoir geomechanical response, and wellbore stability, Journal of Natural Gas Science and Engineering, 96, 104321.
10.1016/j.jngse.2021.104321Yoon, H.C., Kim, J., Um, E.S., and Lee, J.Y., 2022. Integration of Electromagnetic Geophysics Forward Simulation in Coupled Flow and Geomechanics for Monitoring a Gas Hydrate Deposit Located in the Ulleung Basin, East Sea, Korea, Energies, 15, 3823.
10.3390/en15103823- Publisher :The Korean Society of Mineral and Energy Resources Engineers
- Publisher(Ko) :한국자원공학회
- Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
- Journal Title(Ko) :한국자원공학회지
- Volume : 62
- No :5
- Pages :598-611
- Received Date : 2025-09-19
- Revised Date : 2025-10-20
- Accepted Date : 2025-10-24
- DOI :https://doi.org/10.32390/ksmer.2025.62.5.598


Journal of the Korean Society of Mineral and Energy Resources Engineers







