All Issue

2013 Vol.50, Issue 3 Preview Page

Research Paper

30 June 2013. pp. 377-386
Abstract
In this study, adsorption/desorption characteristics of uranium ion was investigated using an anion exchangeresin. After anionization of uranyl(UO22+) ion, batch tests were conducted using A500/2788 as an anion exchange resin. Adsorption tests were conducted for various concentrations of acid, temperatures, concentrations of uranium ions and adroption times whereas desorption tests were conducted for various concentrations of H2SO4 and reaction times. According to test results, the highest adsorption of uranium ion was obtainde in 0.01 M H2SO4 solution while the adsorption decrease in the strong acidic solution. Also, the adsorption rate was found to adsorption capacity. Furthermore, the adsorption results were found to respond well to Langmuir isotherm equation and follow the pseudo second-order kinetic model. In case of desorption tests, the high desorption was obtained in concentrated H2SO4 solutions. Desorption of more than 70% was obtained at the beginning of 60 minutes while the desorption rate decreased gradually and reached to the equilibrium after 6 hours.
본 연구에서는 음이온교환수지를 사용하여 우라늄 이온의 흡탈착특성을 고찰하였다. 따라서 uranyl(UO22+) 이온을 음이온화한 후 음이온교환수지 A500/2788을 이용하여 산농도, 온도, 우라늄의 농도, 반응시간에 따른 흡착실험과 황산농도, 반응시간에 따른 탈착실험을 수행하였다. 실험결과, 황산 0.01 M에서 가장 높은 흡착률을 보였으며 농도가 높아질수록 흡착률은 감소하였다. 반응온도가 증가할수록 흡착반응속도는 증가하였으나 최대흡착량에는 영향을 미치지 않았다. 한편, 흡착등온실험결과, 본 흡착은 Langmuir 등온식에 부합하며, 반응속도는 2차임이 확인되었다. 황산의 농도에 따른 탈착실험에서는 농도가 증가할수록 탈착률이 높아졌으며, 초기 60분 동안 70%이상 탈착이 이루어진 후 탈착속도가 점차 감소하여 6시간이후 탈착평형에 도달하였다.
References
  1. Amaral, J. C. and Morais, C.A., 2010, “Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction,” Minerals Engineering, Vol. 23, pp. 498-503.
  2. Dubinin, M. M., Zaverina, E. D. and Radushkevich, L. V., 1947, “Sorption and structure of active carbons. I. Adsorption of organic vapors,” Zhurnal Fizicheskoi Khimii, Vol. 21, pp. 1351-1362.
  3. Freundlich, H. M. F., 1906, “Over the adsorption in solution,” J. Phys. Chem., Vol. 57, pp. 385-470.
  4. Fukukawa, B. H., 2003, “Activated carbon water treatment technology and management,” Dong hwa Technol., pp. 69.
  5. Ghodbane, I., Nouri, L., Hamdaoui, O. and Chiha, M., 2008, “Kinetic and equilibrium study for the sorption of cadmium (II) ions from aqueous phase by eucalyptus bark,” J. of hazardous materials, Vol. 152, No. 1, pp. 148-158.
  6. Grenthe, I., Fuger, J., Konings, R. J. M., Lemire, R. J., Muller, A. B., Cregu, C. N.-T. and Wanner, H., 1992, Chemical Thermodynamics Of Uranium, Vol. 1, North-Holland, Amsterdam, Netherlands, pp. 55-58.
  7. Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D. A., Rand, M. H., Mompean, F. J., Illemassene, M., Domenech-Orti, C. and Ben-Said, K., 2003, Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, Vol. 5, ELSEVIER, Amsterdam, Netherlands, pp. 64-75.
  8. Helfferich, F., 1962, Ion exchange, McGraw-Hill, New York, pp. 260-162.
  9. Ho, Y. S. and Mckay, G., 1998, “The kinetics of sorption of basic dyes from aqueous phase by eucalyptus bark,” The Canadian journal of chemical engineering, Vol. 76, No. 4, pp. 822-827.
  10. KIGAM(Korea Institute of Geoscience and Mineral Resources), 1999, “Study on the radionuclides concentrations in groundwater,” NIER(National Institute of Enviromental Research), pp. 6-33.
  11. Kim, J. T. and Park, S. K., 2004, “Adsorption of Uranium(Ⅵ) Ion Utilizing Cryptand Ion Exchange Resin,” ANALYTICAL SCIENCE & TECHNOLOGY, Vol. 17, No. 2, pp. 91-97.
  12. Lagergren, S., 1898, “About the theory of so-called adsorption of soluble substances,” Kunglia Svenska Ventenskapsakademiens Handlingar, Vol. 24, No. 4, pp. 1-39.
  13. Langmuir, I., 1918, “The adsorption of gases on plane surfaces of glass, mica and platinum,” J. of the American Chemical Society, Vol.40, No.9, pp. 1361-1403.
  14. Lam, O. P., Heinemanna, F. W. and Meyer, K., 2010, “A new diamantane functionalized tris(aryloxide) ligand system for small molecule activation chemistry at reactive uranium complexes,” Comptes Rendus Chimie, Vol. 13, pp. 803-811.
  15. Na, C. K., Han, M. Y. and Park. H. J., 2011, “Applicability of theoretical Adsorption models for studies on adsorption properties of adsorbents(1),” J. of Korean Society of Environmental Engineers, Vol. 33, No. 8, pp. 606-616.
  16. Marino, G. P., 2008, “European uranium forum,” Uraniumletter International, http://www.goldletterint.com.
  17. Park, S. K., Bae, J. S., Hwang, I. S., Lee, J. Y., Yoon, H. S., Kim, J. S. and Han, C., 2011, “Adsorption/Desorption Behavior of Uranium by Synthetic Ion Exchange Resin Using Tetramethylammonium Hydroxide Pentahydrate ((CH3)4NOH·5H2O),” J. of Korean Society For Geosystem Engineering, Vol. 48, No. 4, pp.473-482.
  18. Rahmati, A., Ghaemi, A. and Samadfam, M., 2012, “Kinetic and thermodynamic studies of uranium (VI) adsorption using Amberlite IRA-910 resin,” Annals of Nuclear Energy, Vol. 39, No. 1, pp. 42-48.
  19. Singh, D.P., Shishodia, N., Yadav, B.P. and Rana, V.B., 1997, “Synthesis and characterization of bivalent metal complexes of a tetradentate N6 macrocyclic ligand,” Polyhedron, Vol. 16, pp. 2229-2232.
  20. Srncik, M., Kogelnig, D., Stojanovic, A., Körner, W., Krachler, R. and Wallner, G., 2009, “Uranium extraction from aqueous solutions by ionic liquids,” Applied Radiation and Isotopes, Vol. 67, pp. 2146-2149.
  21. Stumm, W. and Morgan, J. J., 1995, Aquatic chemistry: chemical equilibria and rates in natural waters(3rd ed.), JOHN WILEY & SONS, NEW YORK, NY 10158(USA).
  22. Temkin, M. I., 1941, “Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules,” J. Phys. Chem. (USSR), Vol. 15, pp. 296-332.
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 50
  • No :3
  • Pages :377-386