All Issue

2024 Vol.61, Issue 1 Preview Page

Research Paper

28 February 2024. pp. 23-32
Abstract
References
1
Almagro Armenteros, J.J., Sønderby, C.K., Sønderby, S.K., Nielsen, H., and Winther, O., 2017. DeepLoc: prediction of protein subcellular localization using deep learning, Bioinformatics, 33(21), p.3387. 10.1093/bioinformatics/btx43129036616
2
Chen, J., Pan, G., Ouyang, J., Ma, J., Fu, L., and Zhang, L., 2020. Study on impacts of dust accumulation and rainfall on PV power reduction in East China, Energy, 194, p.116915. 10.1016/j.energy.2020.116915
3
Cipriani, G., D'Amico, A., Guarino, S., Manno, D., Traverso, M., and Di Dio, V., 2020. Convolutional Neural Network for Dust and Hotspot Classification in PV Modules, Energies, 13(23), p.6357. 10.3390/en13236357
4
Conceição, R., Silva, H.G., Mirão, J., Gostein, M., Fialho, L., Narvarte, L., and Collares-Pereira, M., 2018. Saharan dust transport to Europe and its impact on photovoltaic performance: A case study of soiling in Portugal, Solar Energy, 160, p.94-102. 10.1016/j.solener.2017.11.059
5
Cruz-Rojas, T., Franco, J.A., Hernandez-Escpbedo, Q., Ruiz-Robles, D., and Juarez-Lopez, J.M., 2023. A novel comparison of image semantic segmentation techniques for detecting dust in photovoltaic panels using machine learning and deep learning, Renewable Energy, 217, p.119126. 10.1016/j.renene.2023.119126
6
Gao, Y. and Li, S., 2023. A deep learning-based method detects dust from solar PV panels through Unmaned Aerial Vehicles, Journal of Physics: Conference Series, 2584, p.012019. 10.1088/1742-6596/2584/1/012019
7
Godec, P., Pančur, M., Ilenič, N., Čopar, A., Stražar, M., Erjavec, A., Pretnar, A., Demšar, J., Starič, A., Toplak, M., Žagar, L., Hartman, J., Wang, H., Bellazzi, R., Petrovič, U., Garagna, S., Zuccotti, M., Park, D., Shaulsky, G., and Zupan, B., 2019. Democratized image analytics by visual programming through integration of deep models and small-scale machine learning, Nature communications, 10(1), p.4551. 10.1038/s41467-019-12397-x31591416PMC6779910
8
Han, J., Choi, S., Kim, S., and Jung, Y., 2018. A Study on the Contamination of Photovoltaic Cells by Fine Dust in the Air, Transactions of Korean Hydrogen and New Energy Society, 29(3), p.292-298.
9
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., and Keutzer, K., 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size, arXiv preprint arXiv:1602.07360.
10
Jung, D. and Choi, Y., 2022. Development of Machine Learning Models for Predicting Air Overpressure in an Open-pit Mine, Journal of The Korean Society of Mineral and Energy Resources Engineers, 59(1), p.59-68. 10.32390/ksmer.2022.59.1.059
11
Kaldellis, J.K., Fragos, P., and Kapsali, M., 2011. Systematic experimental study of the pollution deposition impact on the energy yield of photovoltaic installations, Renewable energy, 36(10), p.2717-2724. 10.1016/j.renene.2011.03.004
12
Kim, S.K., 2015. Detection of Surface Contamination of Photovoltaic Module Using Image Sensor, Proceeding of 46th the Korean Institute of Electrical Engineers, Muju, p.1086-1087.
13
Kim, D., Park, S., Moon, J., and Hwang, E., 2021. Machine Learning-Based Solar Power Efficiency Prediction Scheme Considering PM10 Fine-Dust Data, Proceedings of 23rd the Korean Institute of Information Scientists and Engineers, Online, p.272-274.
14
Krizhevsky, A., Sutskever, I., and Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, 25p.
15
Lee, G., Lee, G., and Kang, S., 2017. A Case Study for Analyzing the Optimal Location for A Solar Power Plant via AHP Analysis with Fine Dust and Weather, Journal of the Korea Safety Management & Science, 19(4), p.157-167.
16
Lobo, J.M., Jimenez-Valverde, A., and Real, R., 2008. AUC: a misleading measure of the performance of predictive distribution models, Global ecology and Biogeography, 17(2), p.145-151. 10.1111/j.1466-8238.2007.00358.x
17
Menoufi, K., Fargal, H.F.M., Farghali, A.A., and Khedr, M.H., 2017. Dust accumulation on photovoltaic panels: a case study at the East Bank of the Nile (Beni-Suef, Egypt), Energy Procedia, 128, p.24-31. 10.1016/j.egypro.2017.09.010
18
Park, S., Bang, J., Ruy, I., and Kim, T., 2019. The Prediction of Photovoltaic Power Using Regression Models Based on Weather Big-data and Sensing Data, The Transactions of the Korean Institute of Electrical Engineers, 68(12), p.1662-1668. 10.5370/KIEE.2019.68.12.1662
19
Rao, A., Pillai, R., Mani, M., and Ramamurthy, R., 2014. Influence of Dust Deposition on Photovoltaic Panel Performance, Energy Procedia, 54, p.690-700. 10.1016/j.egypro.2014.07.310
20
Renewable Energy Cloud Platform, 2023.12.31., https://recloud.energy.or.kr/main/main.do
21
Saini, R.K., Saini, D.K., Gupta, R., Verma, P., Dwivedi, R., Kumar, A., Chauhan, D., and Kumar, S., 2023. Effects of dust on the performance of solar panels - a review update from 2015-2020, Energy & Environment, 34(6), p.2110-2162. 10.1177/0958305X221105267
22
Schill, C., Anderson, A., Baldus-Jeursen, C., Burnham, L., Micheli, L., Parlevliet, D., Pilat, E., Stridh, B., and Urrejola, E., 2022. IEA-PVPS task 13: Performance, operation and reliability of photovoltaic systems-Soiling Losses - Impact on the Performance of Photovoltaic Power Plants, Report. International Energy Agency.
23
Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556.
24
Son, J. and Jeong, S., 2019. A Research of the Effects of Particulate Matter on Solar Photovoltaic, Proceedings of Korea Environmental Policy, Seoul, p.52-54.
25
Sung, S. and Cho, Y., 2019. Prediction of Photovoltaic Power Generation Based on Machine Learning Considering the Influence of Particulate Matter, Environmental and Resource Economics Review, 28(4), p.467-495.
26
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z., 2016. Rethinking the inception architecture for computer vision, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.2818-2826. 10.1109/CVPR.2016.308
27
You, H. and Bae, S., 2020. Deep neural network photovoltaic power generation forecasting with fine dust data, Proceeding of 51st the Korean Institute of Electrical Engineers, Busan, p.547-548.
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 61
  • No :1
  • Pages :23-32
  • Received Date : 2024-01-04
  • Revised Date : 2024-02-06
  • Accepted Date : 2024-02-27