All Issue

2024 Vol.61, Issue 1 Preview Page

Research Paper

28 February 2024. pp. 23-32
Almagro Armenteros, J.J., Sønderby, C.K., Sønderby, S.K., Nielsen, H., and Winther, O., 2017. DeepLoc: prediction of protein subcellular localization using deep learning, Bioinformatics, 33(21), p.3387. 10.1093/bioinformatics/btx43129036616
Chen, J., Pan, G., Ouyang, J., Ma, J., Fu, L., and Zhang, L., 2020. Study on impacts of dust accumulation and rainfall on PV power reduction in East China, Energy, 194, p.116915. 10.1016/
Cipriani, G., D'Amico, A., Guarino, S., Manno, D., Traverso, M., and Di Dio, V., 2020. Convolutional Neural Network for Dust and Hotspot Classification in PV Modules, Energies, 13(23), p.6357. 10.3390/en13236357
Conceição, R., Silva, H.G., Mirão, J., Gostein, M., Fialho, L., Narvarte, L., and Collares-Pereira, M., 2018. Saharan dust transport to Europe and its impact on photovoltaic performance: A case study of soiling in Portugal, Solar Energy, 160, p.94-102. 10.1016/j.solener.2017.11.059
Cruz-Rojas, T., Franco, J.A., Hernandez-Escpbedo, Q., Ruiz-Robles, D., and Juarez-Lopez, J.M., 2023. A novel comparison of image semantic segmentation techniques for detecting dust in photovoltaic panels using machine learning and deep learning, Renewable Energy, 217, p.119126. 10.1016/j.renene.2023.119126
Gao, Y. and Li, S., 2023. A deep learning-based method detects dust from solar PV panels through Unmaned Aerial Vehicles, Journal of Physics: Conference Series, 2584, p.012019. 10.1088/1742-6596/2584/1/012019
Godec, P., Pančur, M., Ilenič, N., Čopar, A., Stražar, M., Erjavec, A., Pretnar, A., Demšar, J., Starič, A., Toplak, M., Žagar, L., Hartman, J., Wang, H., Bellazzi, R., Petrovič, U., Garagna, S., Zuccotti, M., Park, D., Shaulsky, G., and Zupan, B., 2019. Democratized image analytics by visual programming through integration of deep models and small-scale machine learning, Nature communications, 10(1), p.4551. 10.1038/s41467-019-12397-x31591416PMC6779910
Han, J., Choi, S., Kim, S., and Jung, Y., 2018. A Study on the Contamination of Photovoltaic Cells by Fine Dust in the Air, Transactions of Korean Hydrogen and New Energy Society, 29(3), p.292-298.
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., and Keutzer, K., 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size, arXiv preprint arXiv:1602.07360.
Jung, D. and Choi, Y., 2022. Development of Machine Learning Models for Predicting Air Overpressure in an Open-pit Mine, Journal of The Korean Society of Mineral and Energy Resources Engineers, 59(1), p.59-68. 10.32390/ksmer.2022.59.1.059
Kaldellis, J.K., Fragos, P., and Kapsali, M., 2011. Systematic experimental study of the pollution deposition impact on the energy yield of photovoltaic installations, Renewable energy, 36(10), p.2717-2724. 10.1016/j.renene.2011.03.004
Kim, S.K., 2015. Detection of Surface Contamination of Photovoltaic Module Using Image Sensor, Proceeding of 46th the Korean Institute of Electrical Engineers, Muju, p.1086-1087.
Kim, D., Park, S., Moon, J., and Hwang, E., 2021. Machine Learning-Based Solar Power Efficiency Prediction Scheme Considering PM10 Fine-Dust Data, Proceedings of 23rd the Korean Institute of Information Scientists and Engineers, Online, p.272-274.
Krizhevsky, A., Sutskever, I., and Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, 25p.
Lee, G., Lee, G., and Kang, S., 2017. A Case Study for Analyzing the Optimal Location for A Solar Power Plant via AHP Analysis with Fine Dust and Weather, Journal of the Korea Safety Management & Science, 19(4), p.157-167.
Lobo, J.M., Jimenez-Valverde, A., and Real, R., 2008. AUC: a misleading measure of the performance of predictive distribution models, Global ecology and Biogeography, 17(2), p.145-151. 10.1111/j.1466-8238.2007.00358.x
Menoufi, K., Fargal, H.F.M., Farghali, A.A., and Khedr, M.H., 2017. Dust accumulation on photovoltaic panels: a case study at the East Bank of the Nile (Beni-Suef, Egypt), Energy Procedia, 128, p.24-31. 10.1016/j.egypro.2017.09.010
Park, S., Bang, J., Ruy, I., and Kim, T., 2019. The Prediction of Photovoltaic Power Using Regression Models Based on Weather Big-data and Sensing Data, The Transactions of the Korean Institute of Electrical Engineers, 68(12), p.1662-1668. 10.5370/KIEE.2019.68.12.1662
Rao, A., Pillai, R., Mani, M., and Ramamurthy, R., 2014. Influence of Dust Deposition on Photovoltaic Panel Performance, Energy Procedia, 54, p.690-700. 10.1016/j.egypro.2014.07.310
Renewable Energy Cloud Platform, 2023.12.31.,
Saini, R.K., Saini, D.K., Gupta, R., Verma, P., Dwivedi, R., Kumar, A., Chauhan, D., and Kumar, S., 2023. Effects of dust on the performance of solar panels - a review update from 2015-2020, Energy & Environment, 34(6), p.2110-2162. 10.1177/0958305X221105267
Schill, C., Anderson, A., Baldus-Jeursen, C., Burnham, L., Micheli, L., Parlevliet, D., Pilat, E., Stridh, B., and Urrejola, E., 2022. IEA-PVPS task 13: Performance, operation and reliability of photovoltaic systems-Soiling Losses - Impact on the Performance of Photovoltaic Power Plants, Report. International Energy Agency.
Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556.
Son, J. and Jeong, S., 2019. A Research of the Effects of Particulate Matter on Solar Photovoltaic, Proceedings of Korea Environmental Policy, Seoul, p.52-54.
Sung, S. and Cho, Y., 2019. Prediction of Photovoltaic Power Generation Based on Machine Learning Considering the Influence of Particulate Matter, Environmental and Resource Economics Review, 28(4), p.467-495.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z., 2016. Rethinking the inception architecture for computer vision, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.2818-2826. 10.1109/CVPR.2016.308
You, H. and Bae, S., 2020. Deep neural network photovoltaic power generation forecasting with fine dust data, Proceeding of 51st the Korean Institute of Electrical Engineers, Busan, p.547-548.
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 61
  • No :1
  • Pages :23-32
  • Received Date : 2024-01-04
  • Revised Date : 2024-02-06
  • Accepted Date : 2024-02-27