Research Paper
Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M.S., Hasan, M., Van Essen, B.C., Awwal, A.A.S., and Asari, V.K., 2019. A state-of-the-art survey on deep learning theory and architectures, Electronics, 8(3), 292p.
10.3390/electronics8030292Alzubaidi, F., Makuluni, P., Clark, S.R., Lie, J.E., Mostaghimi, P., and Armstrong, R.T., 2022. Automatic fracture detection and characterization from unwrapped drill-core images using mask R-CNN, Journal of Petroleum Science and Engineering, 208(Part C), 109471.
10.1016/j.petrol.2021.109471Barton, C.A., Moos, D., Peska, P., and Zoback, M.D., 1997. Utilizing wellbore image data to determine the complete stress tensor: application to permeability anisotropy and wellbore stability, The Log Analyst, 38(6), SPWLA-1997-v38n6a1.
10.1071/AJ97023Barton, C.A., Zoback, M.D., and Burns, K.L., 1988. In-situ stress orientation and magnitude at the Fenton Geothermal Site, New Mexico, determined from wellbore breakouts, Geophysical Research Letters, 15(5), p.467-470.
10.1029/GL015i005p00467Chang, C., 2017. Critical pore pressure assessment for CO2 geological storage in Gyeongsang Basin, Korea, from a geomechanics perspective, Geosciences Journal, 21, p.617-630.
10.1007/s12303-016-0067-0Chen, M.Y., Dahan, C.A., Ekstorm, M.P., Lloyd, P.M., and Rossi, D.J., 1987. Formation imaging with microelectrical scanning arrays, The Log Analyst, 28(3), SPWLA-1987-v28n3a4.
Chen, T. and Guestrin, C., 2016. XGBoost: A scalable tree boosting system, Proceedings of the 22nd ACM SICKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, California, USA.
10.1145/2939672.2939785Dias, L.O., Bom, C.R., Faria, E.L., Valentín, M.B., Correia, M.D., de Albuquerque, M.P., de Albuquerque, M.P., and Coelho, J.M., 2020. Automatic detection of fractures and breakouts patterns in acoustic borehole image logs using fast-region convolutional neural networks, Journal of Petroleum Science and Engineering, 191, 107099.
10.1016/j.petrol.2020.107099Du, L., Lu, X., and Li, H., 2023. Automatic fracture detection from the images of electrical image logs using Mask R-CNN, Fuel, 351, 128992.
10.1016/j.fuel.2023.128992Elman, J.L., 1990. Finding structure in time, Cognitive Science, 14(2), p.179-211.
10.1016/0364-0213(90)90002-EFriedman, J.H., 2001. Greedy function approximation: A gradient boosting machine, The Annals of Statistics, 29(5), p.1189-1232.
10.1214/aos/1013203451Han, S., Xiao, X., Song, B., Guan, T., Zhang, Y., and Lyu, M., 2023. Automatic borehole fracture detection and characterization with tailored Faster R-CNN and simplified Hough transform, Engineering Applications of Artificial Intelligence, 126(Part C), 107024.
10.1016/j.engappai.2023.107024Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M.O., Zoback, M.L., and Zoback, M., 2018. The World Stress Map database release 2016: Crustal stress pattern across scales, Tectonophysics, 744, p.484-498.
10.1016/j.tecto.2018.07.007Heidbach, O., Rajabi, M., Reiter, K., and Ziegler, M., 2016. World stress map 2016, GFZ Data Services.
Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory, Neural Computation, 9(8), p.1735-1780.
10.1162/neco.1997.9.8.17359377276Hochreiter, S., 1998. The vanishing gradient problem during learning recurrent neural nets and problem solutions, International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 6(2), p.107-116.
10.1142/S0218488598000094Hwang, H., Kim, S., and Song, G., 2018. XGBoost model to identify potential factors improving and deteriorating elderly cognition, The Journal of Korean Institute of Next Generation Computing, 14(3), p.16-24.
Jo, Y., Chang, C., Ji, S.H., and Park, K.W., 2019. In situ stress states at KURT, an underground research laboratory in South Korea for the study of high-level radioactive waste disposal, Engineering Geology, 259, 105198.
10.1016/j.enggeo.2019.105198Ki, S., Seo, J., Kwon, O., and Jang, I., 2019. Prediction of missing tubing head pressure using recurrent neural network, Journal of the Korean Society of Mineral and Energy Resources Engineers, 56(5), p.416-426.
10.32390/ksmer.2019.56.5.416Kim, H., Baek, M., Ki, S., Chen, Z., and Lee, K., 2024. Improvement of RNN-based prediction for shale-gas production with data preprocessing in Montney shale play, Gas Science and Engineering (under review).
Lagraba, J.O.P., Hansen, S.M., Spalburg, M., and Helmy, M., 2010. Borehole image tool design, value of information, and tool selection, Dipmeter and Borehole Image Log Technology, 92, p.15-38.
Lee, D.Y., Shin, H.J., and Lim, J.S., 2024. Analysis of the shale gas production prediction model based on machine learning using productivity factors, Journal of the Korean Society of Mineral and Energy Resources Engineers, 61(2), p.111-123.
10.32390/ksmer.2024.61.2.111Lee, K., Lim, J., Yoon, D., and Jung, H., 2019. Prediction of shale-gas production at duvernay formation using deep-learning algorithm, SPE Journal, 24(6), p.2423-2437.
10.2118/195698-PALi, X., Li, Q., Bai, B., Wei, N., and Yuan, W., 2016. The geomechanics of Shenhua carbon dioxide capture and storage (CCS) demonstration project in Ordos Basin, China, Journal of Rock Mechanics and Geotechnical Engineering, 8(6), p.948-966.
10.1016/j.jrmge.2016.07.002Liu, G., Chen, X., Luan, Y., and Li, D., 2024. VirusPredictor: XGBoost-based software to predict virus-related sequences in human data, Bioinformatics, 40(4), btae192.
10.1093/bioinformatics/btae19238597887PMC11052659Ma, J., Ding, Y., Cheng, J.C.P., Tan, Y., Gan, V.J.L., and Zhang, J., 2019. Analyzing the leading causes of traffic fatalities using XGBoost and grid-based analysis: a city management perspective, IEEE Access, 7, p.148059-148072.
10.1109/ACCESS.2019.2946401Olya, B.A.M., Mohebian, R., Bagheri, H., Hezaveh, A.M., and Mohammadi, A.K., 2024. Toward real-time fracture detection on image logs using deep convolutional neural network YOLOv5, Interpretation, 12(2), p.SB9-SB18.
10.1190/INT-2022-0104.1Qiao, B., Wu, J., Wang, R., Hao, Y., Wang, P., Han, D., and Wu, G., 2024. A parallel feature selection method based on NMI-XGBoost and distance correlation for typhoon trajectory prediction, The Journal of Supercomputing, 80, p.11293-11321.
10.1007/s11227-023-05863-3Schuster, M. and Paliwal, K.K., 1997. Bidirectional recurrent neural networks, IEEE Transactions on Signal Processing, 45(11), p.2673-2681.
10.1109/78.650093Shamir, G. and Zoback, M.D., 1992. Stress orientation profile to 3.5 km depth near the San Andreas Fault at Cajon Pass, California, Journal of Geophysical Research: Solid Earth, 97(B4), p.5059-5080.
10.1029/91JB02959XGBoost, 2024.06.27., https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRFClassifier
Yang, J., Goodfellow, S.D., and Harrison, J.P., 2022. Automated extraction of borehole breakout properties from acoustic televiewer (ATV) data, Proceedings of the 56th U.S. Rock Mechanics/Geomechanics Symposium, ARMA, Santa Fe, New Mexico, USA.
10.56952/ARMA-2022-0408Yeom, J., Kim, H., Lee, K., Chang, C., and Jo, Y., 2023. Detection of borehole breakout depth in image logs using machine learning algorithms, The Korean Society of Mineral and Energy Resources Engineers, 60(4), p.223-230.
10.32390/ksmer.2023.60.4.223Zhang, W., Wu, T., Li, Z., Li, Y., Qiu, A., and Shi, Y., 2021. Automatic detection of fractures based on optimal path search in well logging images, Journal of Sensors, 2021(1), 5577084.
10.1155/2021/5577084- Publisher :The Korean Society of Mineral and Energy Resources Engineers
- Publisher(Ko) :한국자원공학회
- Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
- Journal Title(Ko) :한국자원공학회지
- Volume : 61
- No :6
- Pages :468-479
- Received Date : 2024-11-01
- Revised Date : 2024-12-04
- Accepted Date : 2024-12-09
- DOI :https://doi.org/10.32390/ksmer.2024.61.6.468