All Issue

2024 Vol.61, Issue 6 Preview Page

Research Paper

31 December 2024. pp. 480-499
Abstract
References
1

Alfredsson, H.A., Hardarson, B.S., Franzson, H., and Gíslason, S. R, 2008. CO2 sequestration in basaltic rock at the Hellisheidi site in SW Iceland: stratigraphy and chemical composition of the rocks at the injection site, Mineralogical Magazine, 72(1), p.1-5.

10.1180/minmag.2008.072.1.1
2

Bernabé, Y., Mok, U., and Evans, B., 2003. Permeability-porosity relationships in rocks subjected to various evolution processes, Pure and Applied Geophysics, 160, p.937-960.

10.1007/978-3-0348-8083-1_9
3

Bethke, C.M., 1996. Geochemical Reaction Modelling, Oxford University Press, New York.

4

Brunet, J.P.L., Li, L., Karpyn, Z.T., Kutchko, B.G., Strazisar, B., and Bromhal, G., 2013. Dynamic evolution of cement composition and transport properties under conditions relevant to geological carbon sequestration, Energy & Fuels, 27(8), p.4208-4220.

10.1021/ef302023v
5

Callow, B., Falcon-Suarez, I., Ahmed, S., and Matter, J.M., 2018. Assessing the carbon sequestration potential of basalt using X-ray micro-CT and rock mechanics, International Journal of Greenhouse Gas Control, 70, p.146-156.

10.1016/j.ijggc.2017.12.008
6

Celle-Jeanton, H., Huneau, F., Travi, Y., and Edmunds, W.M., 2009. Twenty years of groundwater evolution in the Triassic sandstone aquifer of Lorraine: impacts on baseline water quality, Applied Geochemistry, 24(7), p.1198-1213.

10.1016/j.apgeochem.2009.03.005
7

Clark, D.E., Galeczka, I.M., Dideriksen, K., Voigt, M.J., Wolff-Boenisch, D., and Gislason, S.R., 2019. Experimental observations of CO2-water-basaltic glass interaction in a large column reactor experiment at 50°C, International Journal of Greenhouse Gas Control, 89, p.9-19.

10.1016/j.ijggc.2019.07.007
8

Computer Modelling Group (CMG), 2023. GEM User's Guide (Version 2024.10), Computer Modelling Group Ltd, Calgary, Alberta, Canada.

9

Daval, D., Hellmann, R., Martinez, I., Gangloff, S., and Guyot, F., 2013. Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated PCO2, Chemical Geology, 351, p.245-256.

10.1016/j.chemgeo.2013.05.020
10

Delany, J.M. and Lundeen, S.R., 1990. The LLNL Thermochemical Database, Lawrence Livermore National Laboratory Report UCRL-21658, Lawrence Livermore National Lab.(LLNL), Livermore, California, U.S.

11

Gierzynski, A.O. and Pollyea, R.M., 2017. Three‐phase CO2 flow in a basalt fracture network, Water Resources Research, 53(11), p.8980-8998.

10.1002/2017WR021126
12

Gislason, S.R., Broecker, W.S., Gunnlaugsson, E., Snæbjörnsdóttir, S., Mesfin, K.G., Alfredsson, H.A., Aradottir, E.S., Sigfusson, B., Gunnarsson, I., Stute, M., Matter, J.M., Arnarson, M.Th., Galeczka, I.M., Gudbrandsson, S., Stockman, G., Wolff-Boenisch, D., Stefansson, A., Ragnheidardottir, E., Flaathen, T., Gysi, A.P., and Oelkers, E.H., 2014. Rapid solubility and mineral storage of CO2 in basalt, Energy Procedia, 63, p.4561-4574.

10.1016/j.egypro.2014.11.489
13

Gíslason, S.R., Sigurdardóttir, H., Aradóttir, E.S., and Oelkers, E.H., 2018. A brief history of CarbFix: Challenges and victories of the project's pilot phase, Energy Procedia, 146, p.103-114.

10.1016/j.egypro.2018.07.014
14

Golubev, S.V., Bénézeth, P., Schott, J., Dandurand, J.L., and Castillo, A., 2009. Siderite dissolution kinetics in acidic aqueous solutions from 25 to 100°C and 0 to 50 atm PCO2, Chemical Geology, 265(1-2), p.13-19.

10.1016/j.chemgeo.2008.12.031
15

Gysi, A.P. and Stefánsson, A., 2012a. CO2-water-basalt interaction. Low temperature experiments and implications for CO2 sequestration into basalts, Geochimica et Cosmochimica Acta, 81, p.129-152.

10.1016/j.gca.2011.12.012
16

Gysi, A.P. and Stefánsson, A., 2012b. Experiments and geochemical modeling of CO2 sequestration during hydrothermal basalt alteration, Chemical Geology, 306, p.10-28.

10.1016/j.chemgeo.2012.02.016
17

Heap, M.J., Faulkner, D.R., Meredith, P.G., and Vinciguerra, S., 2014. The influence of temperature and strain rate on the mechanical properties of basalt, Frontiers in Earth Science, 2, p.1-13.

18

Jayne, R.S. and Pollyea, R.M., 2018. Permeability correlation structure of the Columbia River Plateau and implications for fluid system architecture in continental large igneous provinces, Geology, 46(8), p.715-718.

10.1130/G45001.1
19

Jeon, H., Shin, H.C., Yun, T.K., Han, W.S., Jeong, J., and Gwag, J, 2023. A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations, Economic and Environmental Geology, 56(3), p.311-330.

10.9719/EEG.2023.56.3.311
20

Kearns, D., Liu, H., and Consoli, C, 2021. Technology readiness and costs of CCS, Global CCS institute, 3.

21

Kharaka, Y.K., Gunter, W.D., Aggarwal, P.K., Perkins, E., and DeBraal, J.D., 1989. A Computer Program for Geochemical Modelling of Water-Rock Reactions, U.S. Geological Survey Water-Resources Investigations Report 88-4227, Menlo Park, California.

22

Kikuchi, S., Wang, J., Dandar, O., Uno, M., Watanabe, N., Hirano, N., and Tsuchiya, N., 2023. NaHCO3 as a carrier of CO2 and its enhancement effect on mineralization during hydrothermal alteration of basalt, Frontiers in Environmental Science, 11, 1138007.

10.3389/fenvs.2023.1138007
23

Korea Advanced Institute of Science and Technology (KAIST), 2023. Final Report on the Experimental Study of CO2 Mineralization Reactions, Commissioned Project Final Report, Daejeon, Republic of Korea, 48p.

24

Luhmann, A.J., Tutolo, B.M., Bagley, B.C., Mildner, D.F.R., Seyfried, W.E., and Saar, M.O., 2017. Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine, Water Resources Research, 53(3), p.1908-1926.

10.1002/2016WR019216
25

Matter, J.M., Broecker, W.S., Gislason, S.R., Gunnlaugsson, E., Oelkers, E.H., Stute, M., Sigurdardótti, H., Stefansson, A., Alfreðsson., H.A., Aradóttir, E.S., Axelsson, G., Sigfússon, B., and Wolff-Boenisch, D., 2011. The CarbFix Pilot Project-storing carbon dioxide in basalt, Energy Procedia, 4, p.5579-5585.

10.1016/j.egypro.2011.02.546
26

Matter, J.M., Stute, M., Snæbjörnsdottir, S.Ó., Oelkers, E.H., Gislason, S.R., Aradottir, E.S., Sigfusson, B., Gunnarsson, I., Sigurdardottir, H., Gunnlaugsson, E., Axelsson, G., Alfredsson, H.A., Wolff-Boenisch, D., Mesfin, K., Fernandez de la Reguera Taya, D., Hall, J., Dideriksen, K., and Broecker, W.S., 2016. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emission, Science, 352(6291), p.1312-1314.

10.1126/science.aad813227284192
27

McGrail, B.P., Spane, F.A., Amonette, J.E., Thompson, C.R., and Brown, C.F., 2014. Injection and monitoring at the Wallula basalt pilot project, Energy Procedia, 63, p.2939-2948.

10.1016/j.egypro.2014.11.316
28

Rasool, M.H. and Ahmad, M., 2023. Reactivity of basaltic minerals for CO2 sequestration via in situ mineralization: a review, Minerals, 13(9), 1154.

10.3390/min13091154
29

Ratouis, T.M., Snæbjörnsdóttir, S.Ó., Voigt, M.J., Sigfússon, B., Gunnarsson, G., Aradóttir, E.S., and Hjörleifsdóttir, V., 2022. Carbfix 2: A transport model of long-term CO2 and H2S injection into basaltic rocks at Hellisheidi, SW-Iceland, International Journal of Greenhouse Gas Control, 114, 103586.

10.1016/j.ijggc.2022.103586
30

Raza, A., Glatz, G., Gholami, R., Mahmoud, M., and Alafnan, S., 2022. Carbon mineralization and geological storage of CO2 in basalt: Mechanisms and technical challenges, Earth-Science Reviews, 229, 104036.

10.1016/j.earscirev.2022.104036
31

Ryu, C.K., Jeon, Y., Kim. S.H., and Ahn U.S., 2022. Characteristics and distribution of pillow lava in the Cheorwon region, Geosciences Journal, 58(3), p.257-268.

10.14770/jgsk.2022.58.3.257
32

Saldi, G.D., Schott, J., Pokrovsky, O.S., Gautier, Q., and Oelkers, E.H., 2012. An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100-200°C as a function of pH, aqueous solution composition and chemical affinity, Geochimica et Cosmochimica Acta, 83, p.93-109.

10.1016/j.gca.2011.12.005
33

Sanchez-Rivera, D., Mohanty, K., and Balhoff, M., 2015. Reservoir simulation and optimization of Huff-and-Puff operations in the Bakken Shale, Fuel, 147, p.82-94.

10.1016/j.fuel.2014.12.062
34

Sandalow, D., Aines, R., Friedmann, J., Kelemen, P., McCormick, C., Power, I., Schmidt, B., and Wilson, S., 2021. Carbon mineralization roadmap draft october 2021 (No. LLNL-CONF-827384). Lawrence Livermore National Lab. (LLNL), Livermore, California, U.S., 93p.

35

Schaef, H.T., McGrail, B.P., and Owen, A.T., 2011. Basalt reactivity variability with reservoir depth in supercritical CO2 and aqueous phases, Energy Procedia, 4, p.4977-4984.

10.1016/j.egypro.2011.02.468
36

Sigfusson, B., Gislason, S.R., Matter, J.M., Stute, M., Gunnlaugsson, E., Gunnarsson, I., Aradottir E.S., Sigurdardottir, H., Mesfin, K., Alfredsson, H.A., Wolff-Boenisch, D., Arnarsson, M.T., and Oelkers, E.H., 2015. Solving the carbon-dioxide buoyancy challenge: The design and field testing of a dissolved CO2 injection system. International Journal of Greenhouse Gas Control, 37, p.213-219.

10.1016/j.ijggc.2015.02.022
37

Snæbjörnsdóttir, S.Ó., Oelkers, E.H., Mesfin, K., Aradóttir, E.S., Dideriksen, K., Gunnarsson, I., Gunnlaugsson, E., Matter, J.M. Stute, M., and Gislason, S.R., 2017. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland, International Journal of Greenhouse Gas Control, 58, p.87-102.

10.1016/j.ijggc.2017.01.007
38

Snæbjörnsdóttir, S.Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S.R., and Oelkers, E.H., 2020. Carbon dioxide storage through mineral carbonation, Nature Reviews Earth & Environment, 1(2), p.90-102.

10.1038/s43017-019-0011-8
39

Vega, F., Baena-Moreno, F.M., Fernández, L.M.G., Portillo, E., Navarrete, B., and Zhang, Z., 2020. Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale, Applied Energy, 260, 114313.

10.1016/j.apenergy.2019.114313
40

White, S.K., Spane, F.A., Schaef, H.T., Miller, Q.R., White, M.D., Horner, J.A., and McGrail, B.P., 2020. Quantification of CO2 mineralization at the Wallula basalt pilot project, Environmental Science & Technology, 54(22), p.14609-14616.

10.1021/acs.est.0c0514232915559
41

Wu, Y., Xu, T., and Wei, L., 2021. The evolution of paleo-porosity in basalts: Reversing pore-filling mechanisms using X-ray computed tomography, Transport in Porous Media, 138(2), p.425-445.

42

Ye, Z., Liu, X., Sun, H., Dong, Q., Du, W., and Long, Q., 2022. Variations in permeability and mechanical properties of basaltic rocks induced by carbon mineralization, Sustainability, 14(22), 15195.

10.3390/su142215195
43

Zhang, Z. and Huisingh, D., 2017. Carbon dioxide storage schemes: technology, assessment and deployment, Journal of Cleaner Production, 142, p.1055-1064.

10.1016/j.jclepro.2016.06.199
44

Zhu, P., Balhoff, M.T., and Mohanty, K.K., 2017. Compositional modeling of fracture-to-fracture miscible gas injection in an oil-rich shale, Journal of Petroleum Science and Engineering, 152, p.628-638.

10.1016/j.petrol.2017.01.031
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 61
  • No :6
  • Pages :480-499
  • Received Date : 2024-11-08
  • Revised Date : 2024-11-25
  • Accepted Date : 2024-12-03