All Issue

2023 Vol.60, Issue 6 Preview Page

Research Paper

31 December 2023. pp. 504-515
Alakeely, A. and Horne, R.N., 2020. Simulating the behavior of reservoirs with convolutional and recurrent neural networks, SPE Reservoir Evaluation and Engineering, 23(3), p.992-1005. 10.2118/201193-PA
Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M.S., Hasan, M., Van Essen, B.C., Awwal, A.A.S., and Asari, V.K., 2019. A state-of-the-art survey on deep learning theory and architectures, Electronics, 8(3), p.1-66. 10.3390/electronics8030292
Arps, J.J., 1945. Analysis of decline curves, Transactions of the AIME, 160(1), p.228-247. 10.2118/945228-G
Botchkarev, A., 2019. A new typology design of performance metrics to measure errors in machine learning regression algorithms, Interdisciplinary Journal of Information, Knowledge, and Management, 14, p.45-76. 10.28945/4184
Choi, Y., Yoon, D., Choi, J., and Byun, J., 2020. Hyperparameter search for facies classification with bayesian optimization, Geophysics and Geophysical Exploration, 23(3), p.157-167.
De Gooijer, J.G. and Hyndman, R.J., 2006. 25 Years of time series forecasting, International Journal of Forecasting, 22(3), p.443-473. 10.1016/j.ijforecast.2006.01.001
Duong, A.N., 2011. Rate-decline analysis for fracture-dominated shale reservoirs, SPE Reservoir Evaluation Engineering, 22(3), p. 377-387. 10.2118/137748-PA
Engelder, T. and Lash, G.G., 2008. Marcellus Shale play's Vast Resource Potential Creating Stir in Appalachia, American Oil and Gas Reporter, 51(May), Kansas City, Missouri, USA, p.76-87.
Gihm, Y.S., Hwang, I.G., Kim, H.T., Lee, H.S., and Lee, D.S., 2011. Geological characteristics and development strategy of the marcellus shale, Journal of Korean Society for Geosystem Engineering, 48(3), p.371-382.
Graves, A., Mohamed, A., and Hinton, G., 2013. Speech recognition with deep recurrent neural networks, IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Vancouver, BC, Canada, p.6645-6649. 10.1109/ICASSP.2013.6638947
Han, D.K., 2018. Production Forecasting for Shale Gas Well in Transient Flow using Machine Learning Method, Ph.D. Thesis, Dong-A University, Korea, 100p. 10.15530/AP-URTEC-2019-198198
Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory, Neural Computation, 9(8), p.1735-1780. 10.1162/neco.1997.9.8.17359377276
Ilk, D., Rushing, J.A., Perego, A.D., and Blasingame, T.A., 2008. Exponential vs. Hyperbolic Decline in Tight Gas Sands-Understanding the Origin and Implications for Reserve Estimates Using Arp's Decline Curves, SPE Annual Technical Conference and Exhibition, SPE, Denver, Colorado, p.1-23. 10.2118/116731-MS
Jeon, B.K., Lee, K.H., and Kim, E.J., 2019. Development of a prediction model of solar irradiances using LSTM for use in building predictive control, Journal of the Korean Solar Energy Society, 39(5), p.41-52. 10.7836/kses.2019.39.5.041
Ji, M.S., Kwon, S.Y., Park, G.Y., Min, B.H., and Huy, N.X., 2021. Prediction of water saturation from well log data using deep learning algorithms, Journal of the Korean Society of Mineral and Energy Resources Engineers, 58(3), p.215-226. 10.32390/ksmer.2021.58.3.215
Kanfar, M. and Wattenbarger, R., 2012. Comparison of Empirical Decline Curve Methods for Shale Wells, Paper presented at the SPE Canadian Unconventional Resources Conference, SPE, Calgary, Alberta, Canada, p.1-12. 10.2118/162648-MS23346116PMC3546477
Ki, S.I., Seo, J.G., Kwon, O.K., and Jang, I.S., 2019. Prediction of missing tubing head pressure using recurrent neural network, Journal of the Korean Society of Mineral and Energy Resources Engineers, 56(5), p.416-426. 10.32390/ksmer.2019.56.5.416
Kim, J.S., Shin, H.J., and Lim, J.S., 2014. Probabilistic decline curve analysis for forecasting estimated ultimate recovery in shale gas play, Journal of the Korean Society of Mineral and Energy Resources Engineers, 51(6), p.808-819. 10.12972/ksmer.2014.51.6.808
Kocoglu, Y., Gorell, S., and McElroy, P., 2021. Application of Bayesian Optimized Deep Bi-LSTM Neural Networks for Production Forecasting of Gas Wells in Unconventional Shale Gas Reservoirs, Unconventional Resources Technology Conference, URTeC, Houston, Texas, USA,p.1-21. 10.15530/urtec-2021-5418
Lee, D.M., Shin, H.J., and Lim, J.S., 2022. Application of long short-term memory neural networks in shale gas production prediction using production-related factors, Journal of the Korean Society of Mineral and Energy Resources Engineers, 59(6), p.673-683. 10.32390/ksmer.2022.59.6.673
Lee, K.B., Lim, J.T., Yoon, D.U., and Jung, H.S., 2019. Prediction of shale-gas production at duvernay formation using deep-learning algorithm, SPE Journal, 24(6), p.2423-2437. 10.2118/195698-PA
Li, X., Ma, X., Xiao, F., Wang, F., and Zhang, S., 2020. Application of gated recurrent unit (GRU) neural network for smart batch production prediction, Energies, 13(22). p.1-22. 10.3390/en13226121
Li, X., Xiao, K., Li, X., Yu, C., Fan, D., and Sun, Z., 2022. A well rate prediction method based on LSTM algorithm considering manual operations, Journal of Petroleum Science and Engineering, 210, p.1-9. 10.1016/j.petrol.2021.110047
Luo, G. and Tian, Y., Bychina, M., and Ehlig-Economides, C., 2019. Production-strategy insights using machine learning: Application for bakken shale, SPE Reservoir Evaluation and Engineering, 22(3), p.800-816. 10.2118/195681-PA
Luo, S. and Su, H., 2022. Study on the production decline characteristics of shale oil: case study of jimusar field, Frontiers in Energy Research, 10, p.1-13. 10.3389/fenrg.2022.845651
Ng, C.S.W., Jahanbani, G.A., and Nait, A.M., 2022. Well production forecast in Volve field: Application of rigorous machine learning techniques and metaheuristic algorithm, Journal of Petroleum Science and Engineering, 208, p.1-13. 10.1016/j.petrol.2021.109468
Ochella, S. and Shafiee, M., 2021. Performance Metrics for Artificial Intelligence (AI) Algorithms Adopted in Prognostics and Health Management (PHM) of Mechanical Systems, Journal of Physics: Conference Series, 2020 International Symposium on Automation, Information and Computing, Beijing, China, p.1-10.
Oh, H., Ki, S., Park, C., and Jang, I., 2021. Analysis of uncertainty trend for estimated ultimate recovery prediction of shale gas with various production periods based on machine learning, Journal of the Korean Society of Mineral and Energy Resources Engineers, 58(5), p.475-490. 10.32390/ksmer.2021.58.5.475
Paryani, M., Ahmadi, M., Awoleke, O., and Hanks, C., 2016. Using Improved Decline Curve Models for Production Forecasts in Unconventional Reservoirs, SPE Eastern Regional Meeting, SPE, Canton, Ohio, p.1-15. 10.2118/184070-MS
Shin, H.J., Lim, J.S., and Jang, I.S., 2021. Probabilistic prediction of multi-wells production based on production characteristics analysis using key factors in shale formations, Energies, 14, p.1-30. 10.3390/en14175226
Song, X., Liu, Y., Xue, L., Wang, J., Zhang, J., Wang, J., Jiang, L., and Cheng, Z., 2020. Time-series well performance prediction based on long short-term memory (LSTM) neural network model, Journal of Petroleum Science and Engineering, 186, p.1-11. 10.1016/j.petrol.2019.106682
Tan, L., Zuo, L., and Wang, B., 2018. Methods of decline curve analysis for shale gas reservoirs, Energies, 11(3), p.1-18. 10.3390/en11030552
U.S. Energy Information Administration (EIA), 2022.06.07.,
Valko, P. and Lee, W.J., 2010. A Better Way to Forecast Production From Unconventional Gas Wells, SPE Annual Technical Conference and Exhibition, SPE, Florence, Italy, p.1-16. 10.2118/134231-MS
Wang, S., Chen, Z., and Chen, S., 2019. Applicability of deep neural networks on production forecasting in Bakken shale reservoirs, Journal of Petroleum Science and Engineering, 179, p.112-125. 10.1016/j.petrol.2019.04.016
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 60
  • No :6
  • Pages :504-515
  • Received Date : 2023-10-10
  • Revised Date : 2023-11-16
  • Accepted Date : 2023-12-27