All Issue

2025 Vol.62, Issue 5 Preview Page

Review

31 October 2025. pp. 567-583
Abstract
References
1

Aela, P., Chi, H.L., Fares, A., Zayed, T., and Kim, M., 2024. UAV-based studies in railway infrastructure monitoring, Automation in Construction, 167, 105714.

10.1016/j.autcon.2024.105714
2

Ameli, Z., Nesheli, S.J., and Landis, E.N., 2023. Deep learning-based steel bridge corrosion segmentation and condition rating using Mask R-CNN and YOLOv8, Infrastructures, 9(1), 3.

10.3390/infrastructures9010003
3

Bao, W., Du, X., Wang, N., Yuan, M., and Yang, X., 2022. A defect detection method based on BC-YOLO for transmission line components in UAV remote sensing images, Remote Sensing, 14(20), 5176.

10.3390/rs14205176
4

Barreiro, A.C., Seibold, C., Hilsmann, A., and Eisert, P., 2021. Automated damage inspection of power transmission towers from UAV images, arXiv preprint arXiv:2111.15581, Cornell University, Ithaca, NY, USA.

5

Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A.L., 2017. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), p.834-848.

10.1109/TPAMI.2017.2699184
6

Chen, Q., Wen, X., Lu, S., and Sun, D., 2019. Corrosion detection for large steel structure base on UAV integrated with image processing system, Proceedings of the IOP Conference Series: Materials Science and Engineering, IOP Publishing, Jeju, Korea, 012020.

10.1088/1757-899X/608/1/012020
7

De Arriba López, V., Maboudi, M., Achanccaray, P., and Gerke, M., 2024. Automatic non-destructive UAV-based structural health monitoring of steel container cranes, Applied Geomatics, 16(1), p.125-145.

10.1007/s12518-023-00542-7
8

Feroz, S. and Abu Dabous, S., 2021. UAV-based remote sensing applications for bridge condition assessment, Remote Sensing, 13(9), 1809.

10.3390/rs13091809
9

Forkan, A.R.M., Kang, Y.B., Jayaraman, P.P., Liao, K., Kaul, R., Morgan, G., and Sinha, S., 2022. CorrDetector: A framework for structural corrosion detection from drone images using ensemble deep learning, Expert Systems with Applications, 193, 116461.

10.1016/j.eswa.2021.116461
10

He, K., Gkioxari, G., Dollár, P., and Girshick, R., 2017. Mask R-CNN, Proceedings of the IEEE International Conference on Computer Vision (ICCV), IEEE, Venice, Italy, p.2961-2969.

10.1109/ICCV.2017.322
11

He, K., Zhang, X., Ren, S., and Sun, J., 2016. Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Las Vegas, Nevada, USA, p.770-778.

10.1109/CVPR.2016.90
12

Heo, S.J. and Na, W.S., 2025. Review of drone-based technologies for wind turbine blade inspection, Electronics, 14(2), 227.

10.3390/electronics14020227
13

Jiao, X., Wu, N., Zhang, X., Fan, J., Cai, Z., Wang, Y., and Zhou, Z., 2024. Enhancing tower crane safety: A UAV-based intelligent inspection approach, Buildings, 14(5), 1420.

10.3390/buildings14051420
14

Kim, H., Sim, S.H., and Cho, S., 2015. Unmanned aerial vehicle (UAV)-powered concrete crack detection based on digital image processing, Proceedings of the International Conference on Advances in Experimental Structural Engineering, EUCENTRE, Pavia, Italy.

15

Liang, H., Lee, S.C., and Seo, S., 2023. UAV-based low altitude remote sensing for concrete bridge multi-category damage automatic detection system, Drones, 7(6), 386.

10.3390/drones7060386
16

Lin, J.J., Ibrahim, A., Sarwade, S., and Golparvar-Fard, M., 2021. Bridge inspection with aerial robots: Automating the entire pipeline of visual data capture, 3D mapping, defect detection, analysis, and reporting, Journal of Computing in Civil Engineering, 35(2), 04020064.

10.1061/(ASCE)CP.1943-5487.0000954
17

Ly, K.K. and Phung, M.D., 2020. Built infrastructure monitoring and inspection using UAVs and vision-based algorithms, arXiv preprint arXiv:2005.09486, Cornell University, Ithaca, NY, USA.

18

Ma, Y., Zeng, Z., Luo, Z., Tao, N., Deng, L., and Tian, Y., 2025. Current challenges and advancements of aerial thermography for outdoor structural health monitoring: A review, IEEE Sensors Journal, 25(12), p.21000-21016.

10.1109/JSEN.2025.3561200
19

Mahajan, G., 2021. Applications of drone technology in construction industry: a study 2012-2021, International Journal of Engineering and Advanced Technology, 11(1), p.224-239.

10.35940/ijeat.A3165.1011121
20

Marchewka, A., Ziółkowski, P., and Aguilar-Vidal, V., 2020. Framework for structural health monitoring of steel bridges by computer vision, Sensors, 20(3), 700.

10.3390/s2003070032012791PMC7039231
21

Nooralishahi, P., Ramos, G., Pozzer, S., Ibarra-Castanedo, C., Lopez, F., and Maldague, X.P., 2022. Texture analysis to enhance drone-based multi-modal inspection of structures, Drones, 6(12), 407.

10.3390/drones6120407
22

Paik, S.H., Choi, D., Kim, Y.K., Jung, S., and Kim, D.N., 2021. Implementation of the drones with deep-learning crack detection analysis for inspection of bridge, The Journal of Korean Institute of Information Technology, 19(3), p.45-52.

10.14801/jkiit.2021.19.3.45
23

Panigati, T., Zini, M., Striccoli, D., Giordano, P.F., Tonelli, D., Limongelli, M.P., and Zonta, D., 2025. Drone-based bridge inspections: Current practices and future directions, Automation in Construction, 173, 106101.

10.1016/j.autcon.2025.106101
24

Panigrahy, S. and Karmakar, S., 2024. Real-time condition monitoring of transmission line insulators using the YOLO object detection model with a UAV, IEEE Transactions on Instrumentation and Measurement, 73, p.1-9.

10.1109/TIM.2024.3381693
25

Raja, A., Njilla, L., and Yuan, J., 2021. Blur the eyes of UAV: Effective attacks on UAV-based infrastructure inspection, Proceedings of the 33rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, Washington, DC, USA, p.661-665.

10.1109/ICTAI52525.2021.00105
26

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., 2016. You only look once: Unified, real-time object detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Las Vegas, Nevada, USA, p.779-788.

10.1109/CVPR.2016.91
27

Ren, S., He, K., Girshick, R., and Sun, J., 2015. Faster R-CNN: Towards real-time object detection with region proposal networks, Proceedings of the 28th International Conference on Neural Information Processing Systems (NeurIPS), MIT Press, Montreal, Canada

28

Ribeiro, D., Santos, R., Shibasaki, A., Montenegro, P., Carvalho, H., and Calçada, R., 2020. Remote inspection of RC structures using unmanned aerial vehicles and heuristic image processing, Engineering Failure Analysis, 117, 104813.

10.1016/j.engfailanal.2020.104813
29

Ronneberger, O., Fischer, P., and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, Cham, Switzerland, p.234-241.

10.1007/978-3-319-24574-4_28
30

Savino, P., Graglia, F., Scozza, G., and Di Pietra, V., 2025. Automated corrosion surface quantification in steel transmission towers using UAV photogrammetry and deep convolutional neural networks, Computer-Aided Civil and Infrastructure Engineering, 40(14), p.2050-2070.

10.1111/mice.13434
31

Sikora, T., Markovic, L., and Bogdan, S., 2023. Towards operating wind turbine inspections using a lidar-equipped UAV, arXiv preprint arXiv:2306.14637, Cornell University, Ithaca, NY, USA.

32

Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, Cornell University, Ithaca, NY, USA.

33

The Business Research Company, 2025. Drone Inspection And Monitoring Market Report 2025: Size and Overview, Outlook, TBRC Report, London, UK.

34

Wang, C., Chen, G., Huang, M., and Lin, J., 2020. Rust defect detection and segmentation method for tower crane, Proceedings of the 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), IEEE, Fuzhou, China, p.1-3.

10.1109/CSRSWTC50769.2020.9372457
35

Wang, Z.F., Yu, Y.F., Wang, J., Zhang, J.Q., Zhu, H.L., Li, P., and Chen, J.P., 2022. Convolutional neural-network-based automatic dam-surface seepage defect identification from thermograms collected from UAV-mounted thermal imaging camera, Construction and Building Materials, 323, 126416.

10.1016/j.conbuildmat.2022.126416
36

Yeum, C.M. and Dyke, S.J., 2015. Vision-based automated crack detection for bridge inspection, Computer-Aided Civil and Infrastructure Engineering, 30(10), p.759-770.

10.1111/mice.12141
37

Zhou, Q., Ding, S., Feng, Y., Wang, H., Qing, G., and Hu, J., 2024. Research on UAV high precision autonomous intelligent detection and evaluation system for large crane equipment metal structure, Proceedings of the 6th International Conference on Structural Health Monitoring and Integrity Management (ICSHMIM 2024), Zhengzhou, China, 8-10 November, NDT.net, 3057-2827.

Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 62
  • No :5
  • Pages :567-583
  • Received Date : 2025-09-08
  • Revised Date : 2025-09-29
  • Accepted Date : 2025-09-30