All Issue

2025 Vol.62, Issue 3 Preview Page

Review

30 June 2025. pp. 312-326
Abstract
References
1

Albers, E., Bach, W., Perez-Gussinye, M., McCammon, C., and Frederichs, T., 2021. Serpentinization driven H2 production from continental break-up to mid-oceanic ridge spreading: unexpected high rates at the West Iberia Margin, Frontiers in Earth Science, 9, 673093.

10.3389/feart.2021.673063
2

Andreani, M., Daniel, I., and Pollet-Villard, M., 2013. Aluminum speeds up the hydrothermal alteration of olivine, American Mineralogist, 98(10), p.1738-1744.

10.2138/am.2013.4469
3

Anhaeusser, C.R., 2014. Archaean greenstone belts and associated granitic rocks-a review, Journal of African Earth Sciences, 100, p.684-732.

10.1016/j.jafrearsci.2014.07.019
4

Baltuck, M., von Huene, R., and Aubouin, J., 1985. Initial Reports of the Deep Sea Drilling Project, Leg 84. Washington, D.C. p.458-460.

10.2973/dsdp.proc.84.1985
5

Beccaluva, L., Coltorti, M., Giunta, G., and Siena, F., 2004. Tethyan vs. Cordilleran ophiolites: a reappraisal of distinctive tectono-magmatic features of supra-subduction complexes in relation to the subduction mode, Tectonophysics, 393(1-4), p.163-174.

10.1016/j.tecto.2004.07.034
6

Berndt, M.E., Allen, D.E., and Seyfried Jr, W.E., 1996. Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar, Geology, 24(4), p.351-354.

10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2
7

Blay-Roger, R., Bach, W., Bobadilla, L.F., Reina, T.R., Odriozola, J.A., Amils, R., and Blay, V., 2024. Natural hydrogen in the energy transition: Fundamentals, promise, and enigmas, Renewable and Sustainable Energy Reviews, 189, 113888.

10.1016/j.rser.2023.113888
8

Boreham, C.J., Sohn, J.H., Cox, N., Williams, J., Hong, Z., and Kendrick, M., 2021. Hydrogen and hydrocarbons associated with the Neoarchean Frog's Leg Gold Camp, Yilgarn Craton, Western Australia, Chemical Geology, 575, 120098.

10.1016/j.chemgeo.2021.120098
9

Bousquet, R., El Mamoun, R., Saddiqi, O., Goffé, B., Möller, A., and Madi, A., 2008. Mélanges and ophiolites during the Pan-African orogeny: the case of the Bou-Azzer ophiolite suite (Morocco), In Geological Society, London, Special Publications, 297, p. 233-247.

10.1144/SP297.11
10

Cannat, M., Fontaine, F., and Escartin, J., 2010. Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges, In Diversity of hydrothermal systems on slow spreading ocean ridges, Geophysical Monograph Series 9780875904788, 188, p.241-264.

10.1029/2008GM000760
11

Cannat, M., Rouméjon, S., Momoh, E., and Leroy, S., 2019. Tectonic and magmatic controls on serpentinization at slow spreading mid-ocean ridges, Geophysical Research Abstracts, 21.

12

Cathles, L. and Prinzhofer, A., 2020. What pulsating H2 emissions suggest about the H2 resource in the Sao Francisco Basin of Brazil, Geosciences, 10(4), 149.

10.3390/geosciences10040149
13

Cha, J. and Lee, J.Y., 2023. A review on occurrence, mechanism and distribution of natural hydrogen as a promising energy source, Journal of the Geological Society of Korea, 59(3), p.513-526 (in Korean with English abstract).

10.14770/jgsk.2023.034
14

Chae, Y., Lim, H.S., and Joo, Y.J., 2024. Distribution and characteristics of (serpentinized) ultramafic rocks in South Korea as potential source rocks of natural hydrogen, Journal of Geological Society Korea, 60(4), p.517-534.

10.14770/jgsk.2024.037
15

Coveney, R.M. Jr., Goebel, E.D., Dreschhoff, G.A.M., and Angino, E.E., 1987. Serpentinization and the origin of hydrogen gas in Kansas, AAPG Bulletin, 71(1), p.39-48.

10.1306/94886D3F-1704-11D7-8645000102C1865D
16

Delescluse, M. and Chamot-Rooke, N., 2008. Serpentinization pulse in the actively deforming Central Indian Basin, Earth and Planetary Science Letters, 276(1-2), p.140-151.

10.1016/j.epsl.2008.09.017
17

Donzé, F.V., Truche, L., Namin, P.S., Lefeuvre, N., and Bazarkina, E., 2020. Migration of natural hydrogen from deep-seated sources in the São Francisco Basin, Brazil, Geosciences, 10(9), 346.

10.3390/geosciences10090346
18

Duan, J., Kyi, D., and Jiang, W., 2020. AusLAMP-EFTF-imaging the Northern Australian Lithosphere for Resource Potential, Proceeding of the American Geophysical Union, Fall Meeting, Abstracts GP006-04.

10.11636/134997
19

Ellison, E.T., Templeton, A.S., Zeigler, S.D., Mayhew, L.E., Kelemen, P.B., and Matter, J.M., 2021. Low-temperature hydrogen formation during aqueous alteration of serpentinized peridotite in the samail ophiolite, Journal of Geophysical Research, Solid Earth, 126(6), e2021JB021981.

10.1029/2021JB021981
20

Etiope, G. and Ionescu, A., 2015. Low-temperature catalytic CO2 hydrogenation with geological quantities of ruthenium: a possible abiotic CH4 source in chromitite-rich serpentinized rocks, Geofluids, 15(3), p.438-452.

10.1111/gfl.12106
21

Etiope, G. and Whiticar, M.J., 2016. Abiotic methane in continental ultramafic rock systems: towards a genetic model, Applied Geochemistry, 102, p.139-152.

10.1016/j.apgeochem.2019.01.012
22

Evans, B.W., Hattori, K., and Baronnet, A., 2013. Serpentinite: what, why, where? Elements, 9(2), p. 99-106.

10.2113/gselements.9.2.99
23

Firpo, G., Swire, P., Lawrence, S., Hutchinson, I., and Watson, J., 2024. Play-based exploration methods used to find natural hydrogen, GeoExpro, 21, p.72.

24

Frery, E., Langhi, L., Maison, M., and Moretti, I., 2021. Natural hydrogen seeps identified in the north perth basin, western Australia, International Journal of Hydrogen Energy, 46(61), p.31158-31173.

10.1016/j.ijhydene.2021.07.023
25

Frost, B.R. and Beard, J.S., 2007. On silica activity and serpentinization, Journal of petrology, 48(7), p.1351-1368.

10.1093/petrology/egm021
26

Furnes, H., Dilek, Y., and de Wit, M., 2015. Precambrian greenstone sequences represent different ophiolite types, Gondwana Research, 27(2), p.649-685.

10.1016/j.gr.2013.06.004
27

Goodwin, J.A. and Skirrow, R.G., 2019. Producing magnetite and hematite alteration proxies using 3D gravity and magnetic inversion - method and results for the Tennant-Isa Project, northern Australia, Geoscience Australia Record, Canberra.

10.11636/Record.2019.003
28

Hallenbeck, P.C. and Benemann, J.R., 2002. Biological hydrogen production; fundamentals and limiting processes, International Journal of Hydrogen Energy, 27(11-12), p.1185-1193.

10.1016/S0360-3199(02)00131-3
29

Hand, E., 2023. Hidden hydrogen, Science, 379, p.630-636.

10.1126/science.adh147736795818
30

Hanson, J. and Hanson, H., 2024. Hydrogen's organic genesis, Unconventional Resources, 4, 100057.

10.1016/j.uncres.2023.07.003
31

Huang, R., Sun, W., Ding, X., Zhao, Y., and Song, M., 2020. Effect of pressure on the kinetics of peridotite serpentinization, Physics and Chemistry of Minerals, 47, p.1-14.

10.1007/s00269-020-01101-x
32

Hutchinson, I.P., Jackson, O., Stocks, A.E., Barnicoat, A.C., and Lawrence, S.R., 2024. Greenstones as a source of hydrogen in cratonic sedimentary basins, In Geological Society, London, Special Publication, 547, p.511-525.

10.1144/SP547-2023-39
33

Jackson, O., Lawrence, S.R., Hutchinson, I.P., Stocks, A.E., Barnicoat, A.C., and Powney, M., 2024. Natural hydrogen: sources, systems and exploration plays, Geoenergy, 2(1), geoenergy2024-002.

10.1144/geoenergy2024-002
34

Jiang, W., Duan, J., Schofield, A., and Clark, A., 2020. Mapping crustal structure through scale reduction magnetotelluric survey in the East Tennant region, northern Australia, Proceeding of the American Geophysical Union, Fall Meeting 2020, Abstract #V007-0011.

10.11636/133730
35

Kaye, G.W.C. and Laby, T.H., 1986. Tables of Physical and Chemical Constants and Some Mathematical Functions, Longman & Co(15th ed), New York.

36

Kim, H.S., 2022. Origin and reservoir types of abiotic native hydrogen in continental lithosphere, Korean Journal of Mineralogy and Petrology, 35(3), p.313-331 (in Korean with English abstract).

37

Klein, F., Bach, W., and McCollom, T.M., 2013. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks, Lithos, 178, p.55-69.

10.1016/j.lithos.2013.03.008
38

Klein, F., Tarnas, J.D., and Bach, W., 2020. Abiotic sources of molecular hydrogen on earth, Elements, 16, p.19-24.

10.2138/gselements.16.1.19
39

Larin, N., Zgonnik, V., Rodina, S., Deville, E., Prinzhofer, A., and Larin, V.N., 2015. Natural molecular hydrogen seepage associated with surficial, rounded depressions on the European craton in Russia, Natural Resources Research, 24, p.369-383.

10.1007/s11053-014-9257-5
40

Lazar, C., 2020. Using silica activity to model redox-dependent fluid compositions in serpentinites from 100 to 700°C and from 1 to 20 kbar, Journal of Petrology, 61(11-12), egaa101.

10.1093/petrology/egaa101
41

Lefeuvre, N., Truche, L., Donzé, F.V., Ducoux, M., Barré, G., Fakoury, R.A., and Gaucher, E.C., 2021. Native H2 exploration in the western Pyrenean foothills, Geochemistry, Geophysics, Geosystems, 22(8), e2021GC009917.

10.1029/2021GC009917
42

Leong, J.A., Nielsen, M., McQueen, N., Karolytė, R., Hillegonds, D.J., Ballentine, C., and Kelemen, P., 2023. H2 and CH4 outgassing rates in the Samail ophiolite, Oman: implications for low-temperature, continental serpentinization rates, Geochimica et Cosmochimica Acta, 347, p.1-15.

10.1016/j.gca.2023.02.008
43

Lévy, D., Roche, V., Pasquet, G., Combaudon, V., Geymond, U., Loiseau, K., and Moretti, I., 2023. Natural H2 exploration: Tools and workflows to characterize a play, Science and Technology for Energy Transition, 78, 27p.

10.2516/stet/2023021
44

Lin, L.-H., Slater, G.F., Sherwood Lollar, B., Lacrampe-Couloume, G., and Onstott, T.C., 2005. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere, Geochimica et Cosmochimica Acta, 69, p.893-903.

10.1016/j.gca.2004.07.032
45

Lodhia, B.H. and Clark, S.R., 2022. Computation of vertical fluid mobility of CO2, methane, hydrogen and hydrocarbons through sandstones and carbonates, Scientific Reports, 12(1), 10216.

10.1038/s41598-022-14234-635715456PMC9205948
46

Magoon, L.B. and Dow, W.G., 1994. The Petroleum System - From Source to Trap, AAPG Memoir, 60. American Association of Petroleum Geologists, Tulsa, Oklahoma, p.3-24.

10.1306/M605857945606
47

Maiga, O., Deville, E., Laval, J., Prinzhofer, A., and Diallo, A.B., 2023. Characterization of the spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali, Scientific Reports, 13(1), 11876.

10.1038/s41598-023-38977-y37481587PMC10363119
48

Maiga, O., Deville, E., Laval, J., Prinzhofer, A., and Diallo, A.B., 2024. Trapping processes of large volumes of natural hydrogen in the subsurface: the emblematic case of the Bourakebougou H2 field in Mali, International Journal of Hydrogen Energy, 50, p.640-647.

10.1016/j.ijhydene.2023.10.131
49

Malvoisin, B., Brunet, F., Carlut, J., Rouméjon, S., and Cannat, M., 2012. Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration, Journal of Geophysical Research, Solid Earth, 117(B4).

10.1029/2011JB008842
50

Mayhew, L.E., Ellison, E.T., McCollom, T.M., Trainor, T.P., and Templeton, A.S., 2013. Hydrogen generation from low-temperature water-rock reactions, Nature Geoscience, 6, p.478-484.

10.1038/ngeo1825
51

McCollom, T.M. and Bach, W., 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks, Geochimica et Cosmochimica Acta, 73(3), p.856-875.

10.1016/j.gca.2008.10.032
52

McCollom, T.M., Klein, F., Robbins, M., Moskowitz, B., Berquó, T.S., Jöns, N., and Templeton, A., 2016. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine, Geochimica et Cosmochimica Acta, 181, p.175-200.

10.1016/j.gca.2016.03.002
53

McCollom, T.M., Klein, F., and Ramba, M., 2022. Hydrogen generation from serpentinization of iron-rich olivine on Mars, icy moons, and other planetary bodies, Icarus, 372, 114754.

10.1016/j.icarus.2021.114754
54

McMahon, C.J., Roberts, J.J., Johnson, G., Edlmann, K., Flude, S., and Shipton, Z.K., 2023. Natural hydrogen seeps as analogues to inform monitoring of engineered geological hydrogen storage, In Geological Society, London, Special Publications, 528, p.461-489.

10.1144/SP528-2022-59
55

Ménez, B., 2020. Abiotic hydrogen and methane: fuels for life, Elements, 16(1), p.39-46.

10.2138/gselements.16.1.39
56

Monge, A.M. and Vayssaire, A., 2022. A review of some aspects of the molecular hydrogen transport behavior in the subsurface, Proceeding of the EAGE Annual 83rd Conference and Exhibition, Madrid, Spain, p.1-5.

10.3997/2214-4609.20221091436484409
57

Moretti, I. and Webber, M.E., 2021. Natural hydrogen: a geological curiosity or the primary energy source for a low-carbon future, Renewable Matter, 34.

58

Muhammed, N.S., Haq, B., Al Shehri, D., Al-Ahmed, A., Rahman, M.M., and Zaman, E., 2022. A review on underground hydrogen storage: insight into geological sites, influencing factors and future outlook, Energy Reports, 8, p.461-499.

10.1016/j.egyr.2021.12.002
59

Nandi, R. and Sengupta, S., 1998. Microbial production of hydrogen: an overview, Critical Reviews in Microbiology, 24(1), p.61-84.

10.1080/104084198912941819561824
60

Prinzhofer, A. and Cacas-Stentz, M.C., 2023. Natural hydrogen and blend gas: a dynamic model of accumulation, International Journal of Hydrogen Energy, 48, p.21610-21623.

10.1016/j.ijhydene.2023.03.060
61

Prinzhofer, A., Moretti, I., Françolin, J., Pacheco, C., D'Agostino, A., Werly, J., and Rupin, F., 2019. Natural hydrogencontinuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure, International Journal of Hydrogen Energy, 44(12), p.5676-5685.

10.1016/j.ijhydene.2019.01.119
62

Prinzhofer, A., Tahara Cissé, C.S., and Diallo, A.B., 2018. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali), International Journal of Hydrogen Energy, 43(42), p.19315-19326.

10.1016/j.ijhydene.2018.08.193
63

Ranganai, R.T., 2012. Gravity and aeromagnetic studies of the Filabusi Greenstone Belt, Zimbabwe Craton: regional and geotectonic implications, International Journal of Geosciences, 3(5), p.1048-1064.

10.4236/ijg.2012.35106
64

Renard, F., 2021. Reaction-induced fracturing: when chemistry breaks rocks., Journal of Geophysical Research, Solid Earth, 126, e2020JB021451.

10.1029/2020JB021451
65

Rollet, N., Doublier, M., Southby, C., Costelloe, R., Fomin, T., Ley Cooper, Y., Carr, L., Bonnardot, M.-A., Wilford, J., Wong, S., Nicoll, M., and Czarnota, K., 2020. Depth to basement 3D model in the South-Nicholson Basin, Northern Australia, Proceeding of the American Geophysical Union, Fall Meeting 2020(online).

66

Rouméjon, S., Cannat, M., Agrinier, P., Godard, M., and Andreani, M., 2015. Serpentinization and fluid pathways in tectonically exhumed peridotites from the Southwest Indian Ridge (62-65°E), Journal of Petrology, 56(4), p.703-734.

10.1093/petrology/egv014
67

Rüpke, L.H. and Hasenclever, J., 2017. Global rates of mantle serpentinization and H2 production at oceanic transform faults in 3-D geodynamic models, Geophysical Research Letters, 44(13), p.6726-6734.

10.1002/2017GL072893
68

Sallarès, V., Meléndez, A., Prada, M., Ranero, C.R., McIntosh, K., and Grevemeyer, I., 2013. 4, Overriding plate structure of the Nicaragua convergent margin: relationship to the seismogenic zone of the 1992 tsunami earthquake, Geochemistry, Geophysics, Geosystems, 14(9), p.3436-3461.

10.1002/ggge.20214
69

Sánchez-Bastardo, N., Schlögl, R., and Ruland, H., 2021. Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy, Industrial & Engineering Chemistry Research, 60(32), p.11855-11881.

10.1021/acs.iecr.1c01679
70

Shcherbakov, A.V. and Kozlova, N.D., 1986. Occurrence of hydrogen in subsurface fluids and the relationship of anomalous concentrations to deep faults in the USSR, Geotectonics, 20(2), p.120-128.

71

Skelton, A., Whitmarsh, R., Arghe, F., Crill, P., and Koyi, H., 2005. Constraining the rate and extent of mantle serpentinization from seismic and petrological data: implications for chemosynthesis and tectonic processes, Geofluids, 5(3), p.153-164.

10.1111/j.1468-8123.2005.00111.x
72

Sleep, N.H., Meibom, A., Fridriksson, T., Coleman, R.G., and Bird, D.K., 2004. H2-rich fluids from serpentinization: geochemical and biotic implications, Proceedings of the National Academy of Science, 101(35), p.12818-12823.

10.1073/pnas.040528910115326313PMC516479
73

Smith, N.J.P., Shepherd, T.J., Styles, M.T., and Williams, G.M., 2005. Hydrogen exploration: a review of global hydrogen accumulations and implications for prospective areas in NW Europe, In Geological Society, London, Petroleum Geology Conference Series, 6(1), p.349-358.

10.1144/0060349
74

Song, H., Ou, X., Han, B., Deng, H., Zhang, W., Tian, C., and Chai, L., 2021. An overlooked natural hydrogen evolution pathway: Ni2+ boosting H2O reduction by Fe (OH)2 oxidation during low‐temperature serpentinization, Angewandte Chemie International Edition, 60(45), p.24054-24058.

10.1002/anie.20211065334519405
75

Stalker, L., Talukder, A., Strand, J., Josh, M., and Faiz, M., 2022. Gold (hydrogen) rush: risks and uncertainties in exploring for naturally occurring hydrogen, The APPEA Journal, 62(1), p.361-380.

10.1071/AJ21130
76

Suzuki, N., Saito, H., and Hoshino, T., 2017. Hydrogen gas of organic origin in shales and metapelites, International journal of coal geology, 173, p.227-236.

10.1016/j.coal.2017.02.014
77

Tissot, B.P. and Welte, D.H., 1984. Petroleum Formation and Occurrence, Springer, Berlin. 538p.

10.1007/978-3-642-87813-8
78

Ulrich, M., Muñoz, M., Boulvais, P., Cathelineau, M., Cluzel, D., Guillot, S., and Picard, C., 2020. Serpentinization of New Caledonia peridotites: from depth to (sub-)surface, Contributions to Mineralogy and Petrology, 175, p.1-25.

10.1007/s00410-020-01713-0
79

Vasey, D.A., Naliboff, J.B., Cowgill, E., Brune, S., Glerum, A., and Zwaan, F., 2024. Impact of rift history on the structural style of intracontinental rift-inversion orogens, Geology, 52(6), p.429-434.

10.1130/G51489.1
80

Vitale Brovarone, A., Sverjensky, D.A., Piccoli, F., Ressico, F., Giovannelli, D., and Daniel, I., 2020. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere, Nature Communications, 11(1). 3880.

10.1038/s41467-020-17342-x32759942PMC7406650
81

Walther, C.H.E., Flueh, E.R., Ranero, C.R., von Huene, R., and Strauch, W., 2000. Crustal structure across the Pacific margin of Nicaragua: evidence for ophiolitic basement and a shallow mantle sliver, Geophysical Journal International, 141(3), p.759-777.

10.1046/j.1365-246x.2000.00134.x
82

Wang, L., Jin, Z., Chen, X., Su, Y., and Huang, X., 2023. The origin and occurrence of natural hydrogen, Energies, 16(5), 2400.

10.3390/en16052400
83

Warr, O., Giunta, T., Ballentine, C.J., and Sherwood Lollar, B., 2019. Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments, Chemical Geology, 530, 119322.

10.1016/j.chemgeo.2019.119322
84

Wilson, R.W., Houseman, G.A., Mccaffrey, K.J.W., Doré, A.G., and Buiter, S.J.H., 2019. Fifty years of the Wilson Cycle concept in plate tectonics, In Geological Society, London, Special Publications, 470, p.1-17.

10.1144/SP470-2019-58
85

Worman, S.L., Pratson, L.F., Karson, J.A., and Klein, E.M., 2016. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere, Geophysical Research Letters, 43(12), p.6435-6443.

10.1002/2016GL069066
86

Yang, J., 2006. Full 3-D numerical simulation of hydrothermal fluid flow in faulted sedimentary basins: example of the McArthur Basin, Northern Australia, Journal of Geochemical Exploration, 89(1-3), p.440-444.

10.1016/j.gexplo.2005.11.080
87

Zgonnik, V., 2020. The occurrence and geoscience of natural hydrogen: a comprehensive review, Earth-Science Reviews, 203, 103140.

10.1016/j.earscirev.2020.103140
88

Zhang, L., Nasika, C., Donzé, F.-V., Zheng, X., Renard, F., and Scholtès, L., 2019. Modeling porosity evolution throughout reaction-induced fracturing in rocks with implications for serpentinization, Journal of Geophysical Research, Solid Earth, 124(6), p.5708-5733.

10.1029/2018JB016872
89

Zhao, H., Jones, E.A., Singh, R.S., Ismail, H.H.B., and WahTan, S., 2023. The Hydrogen System in the Subsurface: Implications for Natural Hydrogen Exploration, Proceeding of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, October 2023, SPE, p.D031S106R005.

10.2118/216710-MS
90

Zwaan, F., Brune, S., Glerum, A.C., Vasey, D.A., Naliboff, J.B., Manatschal, G., and Gaucher, E.C., 2025. Rift-inversion orogens are potential hot spots for natural H2 generation, Science Advances, 11(8), eadr3418.

10.1126/sciadv.adr341839970211PMC11838002
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 62
  • No :3
  • Pages :312-326
  • Received Date : 2025-04-23
  • Revised Date : 2025-05-14
  • Accepted Date : 2025-05-16