All Issue

2025 Vol.62, Issue 5

Technical Report

31 October 2025. pp. 513-523
Abstract
References
1

Ahn, J.S. and Ko, K.S., 2008. Geochemical distribution of arsenic in groundwater of the geumsan area, Journal of the Korean Society of Mineral and Energy Resources Engineers, 45(5), p.505-515.

2

Ahn, J.S., Ko, K.S., and Chon, C.M., 2007. Arsenic occurrence in groundwater of Korea, Journal of Soil and Groundwater Environment, 12(5), p.64-72.

3

Bandaru, S.R.S., van Genuchten, C.M., Kumar, A., Glade, S., Hernandez, D., Nahata, M., and Gadgil, A., 2020. Rapid and efficient arsenic removal by iron electrocoagulation enabled with in situ generation of hydrogen peroxide, Environmental Science & Technology, 54(10), p.6094-6103.

10.1021/acs.est.0c00012
4

Castañeda, L.F., García, I., Nava, J.L., and Coreño, O., 2024. Concurrent arsenic, fluoride, and hydrated silica removal from deep well water by electrocoagulation: Comparison of sacrificial anodes (Al, Fe, and Al–Fe), Journal of Environmental Management, 365, 121597.

10.1016/j.jenvman.2024.121597
5

Channa, N., Gadhi, T.A., Mahar, R.B., Ali, I., Sajjad, S., Freyria, F.S., Bonelli, B., Widderich, S., and Frechen, F.-B., 2024. Efficient and rapid combined electrocoagulation-filtration of arsenic in drinking water, Water, 16(12), 1684.

10.3390/w16121684
6

Ćurko, J., Mijatović, I., Matošić, M., Jakopović, H.K., and Bošnjak, M.U., 2011. As(V) removal from drinking water by coagulation and filtration through immersed membrane, Desalination, 279(1-3), p.404-408.

10.1016/j.desal.2011.06.043
7

Das, D. and Nandi, B.K., 2021. Arsenic removal from tap water by electrocoagulation: Investigation of process parameters, kinetic analysis and operating cost, Journal of Dispersion Science and Technology, 42(3), p.1532-2351.

10.1080/01932691.2019.1681280
8

Dutta, N., Haldar, A., and Gupta, A., 2021. Electrocoagulation for arsenic removal: field trials in rural west bengal, Archives of Environmental Contamination and Toxicology, 80, p.248-258.

10.1007/s00244-020-00799-8
9

Ghosh, S. and Chaudhari, S., 2025. Effect of bivalent cations on arsenic retention in iron-based systems: A comprehensive study employing co-precipitation, adsorption, batch electrocoagulation, and continuous column experiments, Journal of Water Process Engineering, 76, 108099.

10.1016/j.jwpe.2025.108099
10

Ghosh, S., Debsarkar, A., and Dutta, A., 2019. Technology alternatives for decontamination of arsenic-rich groundwater—A critical review, Environmental Technology & Innovation, 13, p.277-303.

10.1016/j.eti.2018.12.003
11

Hamid, N.H.A., Rushdan, A.I., Nordin, A.H., Norrrahim, M.N.F., Muhamad, S.N.H., Tahir, M.I.H.M., Rosli, N.S.B., Pakrudin, N.H.M., Roslee, A.S., Asyraf, M.R.M., and Knight, V.F., 2024. A review: The state-of-the-art of arsenic removal in wastewater, Water Reuse, 14(3), p.279-311.

10.2166/wrd.2024.142
12

Han, Y.S., Kim, S.H., Jang, J.Y., and Ji, S., 2022. Arsenic removal characteristics of natural Mn-Fe binary coating on waste filter sand from a water treatment facility, Environmental Science and Pollution Research, 29, p.2136-2145.

10.1007/s11356-021-15580-0
13

Ji, S., Yoo, K., and Dempsey, B.A., 2011. The removal of arsenic ion in electro-coagulation cell, Geosystem Engineering, 14, p.71-78.

10.1080/12269328.2011.10541333
14

Ji, S.W., Cheong, Y.W., Yim, G.J., and Oh, C., 2017. Commercialization of Small and power independent type of electrochemical wastewater treatment system for heavy metals, Korea Institute of Patent Information and Commercialization (KIPIC), R&D/2016K000194, p.89.

15

Joca, L., Sacks, J.D., Moore, D., Lee, J.S., Sams, R., and Cowden, J., 2016. Systematic review of differential inorganic arsenic exposure in minority, low-income, and indigenous populations in the United States, Environment International, 92-93, p.707-715.

10.1016/j.envint.2016.01.011
16

Kanel, S.R., Das, T.K., Varma, R.S., Kurwadkar, S., Chakraborty, S., Joshi, T.P., Bezbaruah, A.N., and Nadagouda, M.N., 2023. Arsenic contamination in groundwater: geochemical basis of treatment technologies, ACS Environmental Au Journal , 3, p.135-152.

10.1021/acsenvironau.2c0005337215436PMC10197174
17

Kobya, M., Demirbas, E., and Ulua, F., 2016. Evaluation of operating parameters with respect to charge loading on the removal efficiency of arsenic from potable water by electrocoagulation, Journal of Environmental Chemical Engineering, 4(2), p.1484-1494.

10.1016/j.jece.2016.02.016
18

Kobya, M., Ulu, F., Gebologlu, U., Demirbas, E., and Oncel, M.S., 2011. Treatment of potable water containing low concentration of arsenic with electrocoagulation: Different connection modes and Fe-Al electrodes, Separation and Purification Technology, 77, p.283-293.

10.1016/j.seppur.2010.12.018
19

Maldonado-Reyes, A., Montero-Ocampo, C., Solorza-Feria, O., 2007. Remediation of drinking water contaminated with arsenic by the electro-removal process using different metal electrodes, Journal of Environmental Management, 9, p.1241-1247.

10.1039/b708671g
20

Mandal, P., 2017. An insight of environmental contamination of arsenic on animal health, Emerging Contaminants, 3(1), p.17-22.

10.1016/j.emcon.2017.01.004
21

McCarty, K.M., Hanh, H.T., and Kim, K.W., 2011. Arsenic geochemistry and human health in South East Asia, Reviews on Environmental Health, 26(1), p.71-78.

10.1515/reveh.2011.01021714384PMC3128386
22

Oh, C., Pak, S., Han, Y.-S., Ha, N. T. H., Hong, M., and Ji, S., 2019. Field demonstration of solar-powered electrocoagulation water treatment system for purifying groundwater contaminated by both total coliforms and arsenic, Environmental Technology, 179, 108823.

10.1080/09593330.2019.1629634
23

Oza, H., Anantha Singh, T.S., and Sasikumar Jampa, S., 2021. Removal of arsenic from aqueous solution using combined ultrasonic and electrocoagulation process, Materials Today: Proceedings, 47, p.728-732.

10.1016/j.matpr.2021.01.569
24

Pak, S., 2019. Purifying system for small town in peri-urban and rural area (arsenic contaminated water treatment), KOICA CTS Project Final Report, p.83.

25

Reis, V. and Duarte, A.C., 2019. Occurrence, distribution, and significance of arsenic speciation. In: Duarte, A.C., Reis, V. (eds.), Arsenic Speciation in Algae, Comprehensive Analytical Chemistry, Vol. 85, Elsevier, Amsterdam, p.1-14.

10.1016/bs.coac.2019.03.006
26

Safira, R., Coudert, L., Neculit, C.M., and Rosa, E., 2024. Efficiency of electrocoagulation for simultaneous treatment of As and Mn in neutral mine water, Minerals Engineering, 207, 108546.

10.1016/j.mineng.2023.108546
27

Smedley, P.L. and Kinniburgh, D.G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters, Applied Geochemistry, 17, p.517-568.

10.1016/S0883-2927(02)00018-5
28

Smith, A.H., Lopipero, P.A., Bates, M.N., and Steinmaus, C.M., 2002. Arsenic epidemiology and drinking water standards, Science, 296(5576), p.2145-2146.

10.1126/science.1072896
29

Tenodi, K.Z., Tenodi, S., Nikić, J., Mohora, E., Agbaba, J., and Rončević S., 2024. Optimizing arsenic removal from groundwater using continuous flow electrocoagulation with iron and aluminum electrodes: an experimental and modeling approach, Journal of Water Process Engineering, 66, 106082.

10.1016/j.jwpe.2024.106082
30

Wan, W., Pepping, T.J., Banerji, T., Chaudhari, S., and Giammar, D.E., 2011. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation, Water Research, 45, p.384-392.

10.1016/j.watres.2010.08.016
31

WHO, 2004. Cadmium in drinking water: Background document for development of WHO Guidelines for drinking-water quality, World Health Organization, Geneva, WHO/SDE/WSH/03.04/80, 15p.

32

Yu, H., Li, J., Qu, W., Wang, W., and Wang, J., 2024. High-efficiency removal of As(III) from groundwater using siderite as the iron source in the electrocoagulation process, RSC Advances, 14, 19206.

10.1039/D4RA02716G
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 62
  • No :5
  • Pages :513-523
  • Received Date : 2025-09-17
  • Revised Date : 2025-10-16
  • Accepted Date : 2025-10-19