All Issue

2019 Vol.56, Issue 1

Research Paper

28 February 2019. pp. 1-9
Abstract
References
1
Abin, C.A. and Hollibaugh, J.T., 2014. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism. Environ. Sci. Technol., 48, 681-688.
10.1021/es404098z24319985
2
Adamakis, I.-D.S., Panteris, E., and Eleftheriou, E.P., 2012. Tungsten toxicity in plants. Plant, 1, 82-99.
10.3390/plants102008227137642PMC4844263
3
Alloway, B.J., 2013. Sources of heavy metals and metalloids in soils. In: Aloway, B.J. (3rd Ed.) Heavy Metals in Soils, Springer, New York, p.11-50.
10.1007/978-94-007-4470-7_2
4
Anik, M. and Osseo-Asare, K., 2002. Effect of pH on the anodic behavior of tungsten. J. Electrochem. Soc., 149(6), B224-B233.
10.1149/1.1471544
5
Baldi, F., Minacci, A., Pepi, M., and Scozzafava, A., 2001. Gel sequestration of heavy metals by Klebsiella oxytoca isolated from iron mat. FEMS Microbiol. Ecol., 36, 169-174.
10.1111/j.1574-6941.2001.tb00837.x11451521
6
Banerjee, G., Pandey, S., Ray, A.K., and Kumar, R., 2015. Bioremediation of heavy metals by a novel bacteria strain Enterobacter cloacae and its antioxidant enzime activity, flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water Air Soil Poll., 226, 91-99.
10.1007/s11270-015-2359-9
7
Brewer, L., Fairbrother, A., Clark, J., and Amick, D., 2003. Acute toxicity of lead, steel, and an iron-tungsten-nickel shot to mallard ducks (Anas platyrhynchos). J. Wildlife Dis., 39(3), 638-648.
10.7589/0090-3558-39.3.63814567226
8
De Francisco, N., Ruiz Troya, J.D., and Agüera, E.I., 2003. Lead and lead toxicity in domestic and free living birds. Avian Pathol., 32(1), 3-13.
10.1080/030794502100007066012745376
9
Filella, M., Belzile, N., and Chen, Y.-W., 2002a. Antimony in the environment: a review focused on natural waters I. Occurrence. Earth Sci. Rev., 57, 125-176.
10.1016/S0012-8252(01)00070-8
10
Filella, M., Belzile, N., and Chen, Y.-W., 2002b. Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth Sci. Rev., 59, 265-285.
10.1016/S0012-8252(02)00089-2
11
Filella, M., Belzile, N., and Lett, M.-C., 2007. Antimony in the environment: a review focused on natural waters III. Microbiota relevant interactions. Earth Sci. Rev., 80, 195-217.
10.1016/j.earscirev.2006.09.003
12
Halmi, M.I.E., Zuhainis, S.W., Yusof, M.T., Shaharuddin, N.A., Helmi, W., Shukor, Y., Syed, M.A., and Ahmad, S.A., 2013. Hexavalent molybdenum reduction to Mo-blue by a sodium-dodecyl-sulfate-degrading Klebsiella oxytoca strain DRY14. BioMed Res. Int., 2013, 1-8.
10.1155/2013/38454124383052PMC3872019
13
Haq, R., Zaidi, S.K., and Shakoori, A.R., 1999. Cadmium resistant Enterobacter cloacae and Klebsiella sp., isolated from industrial effluents and their possible role in cadmium detoxification. World J. Microb. Biot. 15, 283-290.
10.1023/A:1008986727896
14
Joo, Y.J., Han, H.-J., Ahn, J.S., and Lee, J.-U., 2016. Microbial effects on geochemical behavior of antimony and synthesis of antimony trioxide. Korean Soc. Miner. Energy Resour. Eng., 53(5), 440-451.
10.12972/ksmer.2016.53.5.440
15
Koutsospyros, A., Braida, W., Christodoulatos, C., Dermatas, D. and Strigul, N., 2006. A review of tungsten: from environmental obscurity to scrutiny. J. Hazard. Mater., 136(1), 1-19.
10.1016/j.jhazmat.2005.11.00716343746
16
Krauskopf, K.B., 1972. Tungsten. In K.H. Wedepohl (Ed.), Handbook of Geochemistry (Vol. II/3), Chapter 74, Springer, New York.
17
Lagarde, F. and Leroy, M., 2002. Metabolism and toxicity of tungsten in humans and animals. Met. Ions Biol. Syst. 39, 741-759.
10.1201/9780203909331.ch22
18
Lee, H.G., Moon, H.S., and Oh, M.S., 2007. Economic Mineral Deposits in Korea. Daewoo Haksul Chongseo, Seoul, 762p.
19
Li, J., Wang, Q., Zhang, S., Qin, D., and Wang, G., 2013. Phylogenetic and genome analyses of antimony-oxidizing bacteria isolated from antimony mined soil. Int. J. Biodeter. Biodegr., 76, 76-80.
10.1016/j.ibiod.2012.06.009
20
Müller, V., 2001. Bacterial fermentation. In Encyclopedia of Life Sciences. Nature Publishing Group, London.
10.1038/npg.els.0001415
21
Nguyen, V.K. and Lee, J.-U., 2014. Isolation and characterization of antimony-reducing bacteria from sediments collected in the vicinity of an antimony factory. Geomicrobiol. J., 31, 855-861.
10.1080/01490451.2014.901440
22
Nguyen, V.K. and Lee, J.-U., 2015. Antiminy-oxidizing bacteria isolated from antimony-contaminated sediment - a phylogenetic study. Geomicrobiol. J., 32, 50-58.
10.1080/01490451.2014.925009
23
Oorts, K., Smolders, E., Degryse, F., Buekers, J., Gasco, G., Cornelis, G., and Mertens, J., 2008. Solubility and toxicity of antimony trioxide (Sb2O3) in soil. Environ. Sci. Technol., 42, 4378-4383.
10.1021/es703061t18605558
24
Park, H.-S., Ko, M.-S., and Lee, J.-U., 2010. Adsorption and redox state alteration of arsenic, chromium and uranium by bacterial extracellular polymeric substances (EPS). Econ. Environ. Geol., 43(3), 223-233.
25
Qi, C., Liu, G., Chou, C.-L., and Zheng, L., 2008. Environmental geochemistry of antimony in Chinese coals. Sci. Tot. Environ., 389, 225-234.
10.1016/j.scitotenv.2007.09.00717936877
26
Ryzhenko, B.N., 2010. Technology of groundwater quality prediction: 1. Eh-pH diagram and detection coefficient of molybdenum and tungsten in aqueous solutions. Geochem. Int., 48, 407-414.
10.1134/S0016702910040105
27
Senesi, G.S., Baldassarre, G., Senesi, N., and Radina, B., 1999. Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere, 39, 343-377.
10.1016/S0045-6535(99)00115-0
28
Senesi, N., Padovano, G., and Brunetti, G., 1988. Scandium, titanium, tungsten and zirconium content in commercial inorganic fertilizers and their contribution to soil. Environ. Technol., 9(9), 1011-1020.
10.1080/09593338809384663
29
Shedd, K.B., 2011. Minerals Yearbook, Volume 1: Tungsten, U.S. Geological Survey, 2018.12.11., http://minerals.usgs.gov/minerals/pubs/commodity/tungsten/myb1-2011-tungs.pdf.
30
Shedd, K.B., 2015. Minerals Yearbook, Tungsten, U.S. Geological Survey, 2018.12.11, https://minerals.usgs.gov/minerals/pubs/commodity/tungsten/myb1-2015-tungs.pdf.
31
Strigul, N., 2010. Does speciation matter for tungsten ecotoxicology? Ecotox. Environ. Safe., 73(6), 1099-1113.
10.1016/j.ecoenv.2010.05.005
32
Strigul, N., Koutsospyros, A., and Christodoulatos, C., 2010. Tungsten speciation and toxicity: acute toxicity of mono-and poly-tungstates to fish. Ecotox. Environ. Safe., 73(2), 164-171.
10.1016/j.ecoenv.2009.08.01619836837
33
Strigul, N., Koutsospyros, A., Arienti, P., Christodoulatos, C., Dermatas, D., and Braida, W., 2005. Effects of tungsten on environmental systems. Chemosphere, 61(2), 248-258.
10.1016/j.chemosphere.2005.01.08316168748
34
Tomiyasu, T. and Yonehara, N., 1996. Spectrophotometric determination of trace amounts of tungsten(VI) based on its inhibitory effect for the red intermediate formation on the iron(II) catalyzed chlorpromazine-hydrogen peroxide reaction. Anal. Sci., 12, 899-903.
10.2116/analsci.12.899
35
Werner, A.B.T., Sinclair, W.D., and Amey, E.B., 1998. International Strategic Mineral Issues Summary Report – Tungsten, U.S. Geological Survey Circular 930-O, U.S. Government Printing Office, Washington, DC, 71p.
10.3133/cir930O
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 56
  • No :1
  • Pages :1-9
  • Received Date : 2019-01-06
  • Revised Date : 2019-02-13
  • Accepted Date : 2019-02-22