All Issue

2017 Vol.54, Issue 6 Preview Page

Review

31 December 2017. pp. 700-709
Abstract
References
1
Acero, P., Cama, J., Ayora, C., and Asta, M., 2009. Chalcopyrite dissolution rate law from pH 1 to 3. Geologica Acta, 7(3). 389-397.
2
Adebayo, A., Ipinmoroti, K., and Ajayi, O., 2003. Dissolution kinetics of Chalcopyrite with hydrogen peroxide in sulphuric acid medium. Chem. Biochem. Eng. Q,, 17(3), 213-218.
3
Ahmadi, A., Schaffie, M., Petersen, J., Schippers, A., and Ranjbar, M., 2011. Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density. Hydrometallurgy, 106(1-2), 84-92.
4
Aydoğan, S., Erdemoğlu, M., Aras, A., Uçar, G., and Özkan, A. 2006b. Dissolution kinetics of celestite (SrSO4) in HCl solution with BaCl2. Hydrometallurgy, 84(3-4), 239-246.
5
Aydoğan, S., Uçar, G., and Canbazoglu, M., 2006a, Dissolution kinetics of Chalcopyrite in acidic potassium dichromate solution. Hydrometallurgy, 81(1), 45-51.
6
Carneiro, M.F.C. and Leão, V.A., 2007. The role of sodium chloride on surface properties of chalcopyrite leached with ferric sulphate. Hydrometallurgy, 87(3-4). 73-79.
7
Chmielewski T. and Kaleta R., 2011. Galvanic interactions of sulfide minerals in leaching of flotation concentrate from Lubin Concentrator. Physicochem. Probl. Miner. Process, 46, 21-34.
8
Córdoba, E.M., Muñoz, J.A., Blázquez, M.L., González, F., and Ballester, A., 2008. Leaching of chalcopyrite with ferric ion. Part III: effect of redox potential on the silver-catalyzed process. Hydrometallurgy, 93(3-4). 97-105.
9
Crundwell, F.K., 2015. The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite. Can. Metall. Quart., 54(3), 279-288.
10
D’Hugues, P., Foucher, S., Gallé-Cavalloni. P., and Morin, D., 2002. Continuous bioleaching of Chalcopyrite using a novel extremely thermophilic mixed culture. Int J. Miner Process, 66, 107-119.
11
Debernardi, G. and Carlesi, C., 2013. Chemical-electrochemical approaches to the study passivation of chalcopyrite. Min. Proc. Ext. Met. Rev., 34, 10-41.
12
Dixon, D.G., Mayne, D.D., and Baxter, K.G., 2008. GALVANOX(TM) - a novel galvanically-assisted atmospheric leaching technology for copper concentrates. Can. Metall. Quart., 47, 327-336.
13
Dong, T., Hua, Y., Zhang, Q., and Zhou, D. 2009. Leaching of chalcopyrite with brønsted acidic ionic liquid. Hydrometallurgy, 99(1-2), 33-38.
14
Dreisinger, D. and Abed, N., 2002. A fundamental study of the reductive leaching of Chalcopyrite using metallic iron part I: kinetic analysis. Hydrometallurgy, 66(1-3). 37-57.
15
Dutrizac, J.E., 1978. The kinetics of dissolution of chalcopyrite in ferric ion media. Metall. Trans., 9B. 431.439.
16
Espiari, S., Rashchi, F., and Sadrenezhaad, S.K., 2006. Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy, 82(1-2), 54-62.
17
Feng, S., Yang, H., Zhan, X., and Wang, W., 2014. Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter. Bioresour. Technol., 161, 371-378.
18
Fuentes-Aceituno, J.C., Lapidus, G.T., and Doyle, F.M., 2008. A kinetic study of the electro-assisted reduction of chalcopyrite. Hydrometallurgy, 92(1-2). 26-33.
19
Ghahremaninezhad, A., Radzinski, R., Gheorghiu, T., Dixon, D.G., and Asselin, E., 2015. A model for silver ion catalysis of chalcopyrite (CuFeS2) dissolution. Hydrometallurgy, 155, 95-104.
20
Hackl, R.P., Dreisinger, D.B., Peters, E., and King, J.A., 1995. Passivation of Chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy, 39(1-3), 25-48.
21
Harmer, S.L., Thomas, J.E., Fornasiero, D., and Gerson, A.R., 2006. The evolution of surface layers formed during Chalcopyrite leaching. Geochim. Cosmochim. Acta, 70, 4392-4402.
22
Hirato, T., Kinishita, M., Awakura, Y., and Majima, H., 1986. 'The leaching of chalcopyrite with ferric chloride. Metall. Trans. B., 17(1), 19-28.
23
Hirato, T., Majima, H., and Awakura, Y., 1987. The leaching of chalcopyrite with ferric sulphate. Metall. Trans. B, 18(3), 489-496.
24
Hiroyoshi, N., Arai, M., Miki, H., Tsunekawa, M., and Hirajima, T., 2002. A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy, 63(3), 257-267.
25
Holmes, P.R. and Crundwell, F.K., 1995. Kinetic aspects of galvanic interactions between minerals during dissolution. Hydrometallurgy, 39, 353-375.
26
Ikiz, D., Gülfen, M., and AydIn, A.O., 2006. Dissolution Kinetics of primary Chalcopyrite ore in hypochlorite solution. Miner. Eng., 19(9), 972-974.
27
Kimball, B.E., Rimstidt, J.D., and Brantley, S.L., 2010. Chalcopyrite dissolution rate laws. Appl. Geochem., 25(7), 972-83.
28
Klauber, C., 2008. A critical review of the surface chemistry of acidic ferric sulphate dissolution of Chalcopyrite with regards to hindered dissolution. Int. J. Miner. Process, 86, 1-17.
29
Klauber, C., Parker, A., Van Bronswijk, W., and Watling, H., 2001. Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy. Int. J. Miner. Process, 62(1-4), 65-94.
30
Leahy, M.J. and Schwarz, P. 2009. Modelling jarosite precipitation in isothermal chalcopyrite bioleaching columns. Hydrometallurgy, 98(1-2), 181-191.
31
Li, J., Kawashima, N., Kaplun, K., Absolon, V.J., and Gerson, A.R., 2010. Chalcopyrite leaching: the rate controlling factors. Geochim. Cosmochim. Acta, 74, 2881-2893.
32
Li, Y., Kawashima, N., Li, J., Chandra, A.P. and Gerson, A.R. 2013. A review of the structure, and fundamental mechanisms and kinetics of the leaching of Chalcopyrite. Adv. Colloid Interface Sci., 197-198, 1-32.
33
Liang, C.L., Xia, J.L., Zhao, X.J., Yang, Y., Gong, S.Q., Nie, Z.Y., Ma, C.Y., Zheng, L., Zhao, Y.D., and Qiu, G.Z., 2010. Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis. Hydrometallurgy, 105(1-2), 179-185.
34
Martínez-Gómez, V.J., Fuentes-Aceituno, J.C., Pérez-Garibay, R., Lee, J-C. 2016. A phenomenological study of the electro-assisted reductive leaching of Chalcopyrite. Hydrometallurgy, 164, 54-63.
35
Nakazawa, H., Fujisawa, H., and Sato, H., 1998. Effect of activated carbon on the bioleaching of chalcopyrite concentrate. Int. J. Miner. Process, 55, 87-94.
36
Nicol, M. J. and Lázaro, I., 2003. The role of non-oxidative processes in the leaching of chalcopyrite. Proceedings of Copper-Cobre Conference 2003, Santiago, Chile. Nov 30-Dec 3, p. 367-381.
37
Nicol, M.J., 2016. Photocurrents at chalcopyrite and pyrite electrodes under leaching conditions. Hydrometallurgy, 163, 104-107.
38
Nicol, M.J., Miki, H., and Zhang, S., 2017. The anodic behaviour of chalcopyrite in chloride solutions: Voltammetry. Hydrometallurgy, 171, 198-205.
39
Osseo-Asare, K., 1992. Semiconductor electrochemistry and hydrometallurgical dissolution processes. Hydrometallurgy, 29(1-3), 61-90.
40
Panda, S., Akcil, A., Pradhan, N., and Deveci, H. 2015. Review: Current scenario of Chalcopyrite bioleaching: A review on the recent advances to its Heap-leach technology. Bioresour. Technol., 196, 694-706.
41
Parker, A.J., Paul, R.L., and Power, G.P. 1981. Electrochemical aspects of leaching copper from chalcopyrite in ferric and cupric salt solutions. Aust. J. Chem., 34(1), 13-34.
42
Parker, G.K., Woods, R., and Hope, G.A., 2008. Raman investigation of chalcopyrite oxidation. Colloids Surf. A, 318, 160-168.
43
Rittmann, B.E. and McCarty, P.L., 2001. Environmental Biotech-nology: Principles and Applications, 1st Ed., Vol. 1, McGraw-Hill, NY, USA, p.17.
44
Safari, V., Arzpeyma, G., Mostoufi, N., and Rashci, F. 2009. A shrinking particle - shrinking core model for leaching of a zinc ore containing silica. J. Miner. Process, 93(1), 79-83.
45
Viramontes-Gamboa, G., Rivera-Vasquez, B.F., and Dixon, D.G., 2007. The active-passive behavior of chalcopyrite comparative study between electrochemical and leaching responses. J. Electrochem. Soc., 154(6), C299-C311.
46
Zeng W, Qiu G, Zhou H., and Chen M., 2011. Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48°C. Hydro-metallurgy, 105(3-4), 259-63.
47
Zeng, W., Qiu, G., Zhou, H., Liu, X., Chen, M., Chao, W., Zhang, C., and Peng, J. 2010. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate. Hydrometallurgy, 100(3-4), 177-180.
48
Zhao, H., Wang, J., Gan, X., Hu, M., Tao, L., Qin, W., and Qiu, G. 2016. Role of pyrite in sulfuric acid leaching of chalcopyrite: An elimination of polysulfide by controlling redox potential. Hydrometallurgy, 164, 159-165.
49
Zhao, H., Wang, J., Yang, C., Hu, M., Gan, X., Tao, L., Qin, W., and Qiu, G. 2015. Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: An emphasis on solution compositions. Hydrometallurgy, 151, 141-150.
50
Zhou, H.B., Zeng, W.M., Yang, Z.F., Xie, Y.J., and Qiu, G.Z., 2009. Review: Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor. Bioresour. Technol., 100, 515-520.
51
Zhou, S., Gan, M., Zhu, J., Li, Q., Jie, S., Yang, B., and Liu, X., 2015. Catalytic effect of light illumination on bioleaching of chalcopyrite. Bioresour. Technol., 182, 345-352.
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 54
  • No :6
  • Pages :700-709
  • Received Date : 2016-09-18
  • Revised Date : 2016-10-21
  • Accepted Date : 2017-12-22