Review
Abstract
References
Ahmadi, A., Schaffie, M., Petersen, J., Schippers, A., and Ranjbar, M., 2011. Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density. Hydrometallurgy, 106(1-2), 84-92. Boon, M., Heijnen, J.J., and Hansford, G.S. 1998. The mechanisms and kinetics of bioleaching sulphide minerals. Miner. Process. Extr. Metall. Rev., 19(1), 107-115. Breed, A.W. and Hansford, G.S., 1999. Studies on the mechanism and kinetics of bioleaching, Miner. Eng., 12(4), 383-392. Clark, M.E., Batty, J.D., van Buuren, C.B., Dew, D.W., and Eamon, M.A., 2006. Biotechnology in minerals processing: technological breakthroughs creating value. Hydrometallurgy, 83(1-4), 3-9. Crundwell, F.K., 1988. The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals. Hydrometallurgy, 21(2), 155-190. Crundwell, F.K., 2015. The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite. Can, Metall. Quart., 54(3), 279-288. Debernardi, G. and Carlesi, C., 2013. Chemical-electrochemical approaches to the study passivation of chalcopyrite. Min. Proc. Ext. Met. Rev., 34, 10-41. D'Hugues, P., Foucher, S., Gallé-Cavalloni, P., and Morin, D., 2002. Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture. Int. J. Miner. Process., 66(1-4), 107-19. Dutrizac, J., 1981. The dissolution of chalcopyrite in ferric sulfate and ferric chloride media. Metall. Master. Trans. B., 12, 371-378. Feng, S., Yang, H., Zhan, X., and Wang, W., 2014. Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter, Bioresour. Technol., 161, 371-378. Gautier, V., Escobar, B. and Vargas, T., 2008. Cooperative action of attached and planktonic cells during bioleaching of chalcopyrite with Sulfolobus metallicus at 70°C, Hydrometall-urgy, 94(1-4), 121-126. Hackl, R.P., Dreisinger, D.B., Peters, E., and King, J.A., 1995. Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy, 39(1-3), 25-48. Hatzikioseyian, A. and Tsezos, M., 2006. Modelling of microbial metabolism stoichiometry: Application in bioleaching processes. Hydrometallurgy, 83(1-4), 29-34. Hiroyoshi, N., Miki, H., Hirajima, T., and Tsunekawa, M., 2001. Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions. Hydrometallurgy, 60(3), 185-197. Hiroyoshi, N., Arai, M., Miki, H., Tsunekawa, M., and Hirajima, T., 2002. A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy, 63(3), 257-267. Hiroyoshi, N., Kuroiwa, S., Miki, H., Tsunekawa, M., and Hirajima, T., 2004. Synergistic effect of cupric and ferrous ions on active-passive behavior in anodic dissolution of chalcopyrite in sulfuric acid, Hydrometallurgy, 74(1-2), 103-116. Hiroyoshi, N., Tsunekawa, M., Okamoto, H., Nakayama, R., and S. Kuroiwa, 2008. Improved chalcopyrite leaching through optimization of redox potential. Can. Metall. Quart., 47(3), 253-258. Jones, C.A. and Kelly, D.P., 1983. Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture: influence of product and substrate inhibition. J. Chem. Technol. Biotechno., 33(4), 241-261. Khoshkhoo, M., Dopson, M., Shchukarev, A., and Sandstrom, A., 2014. Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate. Hydrometallurgy, 144-145, 7-14. Kinzlera, K., Gehrkea, T., Telegdib, J., and Sand, W., 2003. Bioleaching-a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy, 71(1-2), 83-88. Li, Y., Kawashima, N., Li, J., Chandra, A.P., and Gerson, A.R., 2013. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite, Adv. Colloid Interface Sci., 197-198, 1-32. Nicol M, Miki, H. and Velasquez-Yevenes, L., 2010. The dissolution of chalcopyrite in chloride solutions: part 3. Mechanisms. Hydrometallurgy, 103(1-4), 86-95. Ojumu, T.V., Petersen, J., Searby, G.E., and Hansford, G.S., 2006. A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to Heap bioleaching. Hydrometallurgy, 83(1-4), 21-28. Olson, G.J., Brierley, J.A., and Brierley, C.L., 2003, Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol., 63(3), 249-257. Panda, S., Sanjay, K., Sukla, L.B., Pradhan, N., Subbaiah, T., Mishra, B.K, Prasad, M.S.R., and Rav. S. K., 2012. Insights into heap bioleaching of low grade chalcopyrites ores; a pilot scale study. Hydrometallurgy, 125-126, 157-165. Panda, S., Akcil, A., Pradhan, N., and Deveci, H. 2015. Review: Current scenario of chalcopyrite bioleaching: A review on the recent advances to its Heap-leach technology. Bioresour. Technol., 196, 694-706. Petersen, J., 2010. Modelling of bioleach processes: Connection between science and engineering, Hydrometallurgy, 104(3-4), 404-409. Rittmann, B.E. and McCarty, P.L., 2001. Environmental Biotechnology: Principles and Applications, 1st Ed., McGraw-Hill, NY, USA, p. 52-169. Rohwerder T., Gehrke T., Kinzler K., and Sand W., 2003. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol., 63(3), 239-248. Rodríguez, Y., Ballester, A., Blazquez, M.L., Gonzalez, F., and Munoz, J.A., 2003. Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite, and sphalerite. Geomicrobiol. J., 20, 131-141. Sand, W. and Gehrke, T., 2006. Extracellular polymeric substances mediate bioleaching/ biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res. Microbiol., 157(1), 49-56. Schippers, A., Hedrich, S., Vasters, J., Drobe, M., Sand, W., and Willscher, S., 2013. Biomining: metal recovery from ores with microorganism. Adv. Biochem. Eng. Biotechno., 141, 1-47. Vargas, T., Davis-Belmar, C.S., and Cárcamo, C., 2014. Biological and chemical control in copper bioleaching processes: When inoculation would be of any benefit?. Hydrometallurgy, 150, 290-298. Vilcáez, J., Suto, K., and Inoue, C., 2008. Bioleaching of chalcopyrite with thermophiles: temperature-pH-ORP dependence. Int. J. Miner. Process., 88(1-2), 37-44. Watling, H.R., 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides - a review. Hydrometallurgy, 84(1-2), 81-108. Yoo, K., Lee, J.C., Jeong, J., and Sohn J.S., 2008. The effect of the redox potential on the leaching of chalcopyrite in chloride media. J. of Mineral and Energy Resources, 45(2), 202-207. Zeng, W., Qiu, G., Zhou, H., Liu, X., Chen, M., Chao, W., Zhang, C., and Peng, J., 2010. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate. Hydrometallurgy, 100(3-4), 177-180. Zeng, W., Qiu, G., Zhou, H., and Chen, M., 2011. Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48°C, Hydrome-tallurgy, 105(3-4), 259-263.
Information
- Publisher :The Korean Society of Mineral and Energy Resources Engineers
- Publisher(Ko) :한국자원공학회
- Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
- Journal Title(Ko) :한국자원공학회지
- Volume : 54
- No :6
- Pages :690-699
- Received Date : 2016-09-19
- Revised Date : 2016-10-26
- Accepted Date : 2017-12-22
- DOI :https://doi.org/10.12972/ksmer.2017.54.6.690