All Issue

2017 Vol.54, Issue 6 Preview Page

Review

31 December 2017. pp. 690-699
Abstract
References
1
Ahmadi, A., Schaffie, M., Petersen, J., Schippers, A., and Ranjbar, M., 2011. Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density. Hydrometallurgy, 106(1-2), 84-92.
2
Boon, M., Heijnen, J.J., and Hansford, G.S. 1998. The mechanisms and kinetics of bioleaching sulphide minerals. Miner. Process. Extr. Metall. Rev., 19(1), 107-115.
3
Breed, A.W. and Hansford, G.S., 1999. Studies on the mechanism and kinetics of bioleaching, Miner. Eng., 12(4), 383-392.
4
Clark, M.E., Batty, J.D., van Buuren, C.B., Dew, D.W., and Eamon, M.A., 2006. Biotechnology in minerals processing: technological breakthroughs creating value. Hydrometallurgy, 83(1-4), 3-9.
5
Crundwell, F.K., 1988. The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals. Hydrometallurgy, 21(2), 155-190.
6
Crundwell, F.K., 2015. The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite. Can, Metall. Quart., 54(3), 279-288.
7
Debernardi, G. and Carlesi, C., 2013. Chemical-electrochemical approaches to the study passivation of chalcopyrite. Min. Proc. Ext. Met. Rev., 34, 10-41.
8
D'Hugues, P., Foucher, S., Gallé-Cavalloni, P., and Morin, D., 2002. Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture. Int. J. Miner. Process., 66(1-4), 107-19.
9
Dutrizac, J., 1981. The dissolution of chalcopyrite in ferric sulfate and ferric chloride media. Metall. Master. Trans. B., 12, 371-378.
10
Feng, S., Yang, H., Zhan, X., and Wang, W., 2014. Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter, Bioresour. Technol., 161, 371-378.
11
Gautier, V., Escobar, B. and Vargas, T., 2008. Cooperative action of attached and planktonic cells during bioleaching of chalcopyrite with Sulfolobus metallicus at 70°C, Hydrometall-urgy, 94(1-4), 121-126.
12
Hackl, R.P., Dreisinger, D.B., Peters, E., and King, J.A., 1995. Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy, 39(1-3), 25-48.
13
Hatzikioseyian, A. and Tsezos, M., 2006. Modelling of microbial metabolism stoichiometry: Application in bioleaching processes. Hydrometallurgy, 83(1-4), 29-34.
14
Hiroyoshi, N., Miki, H., Hirajima, T., and Tsunekawa, M., 2001. Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions. Hydrometallurgy, 60(3), 185-197.
15
Hiroyoshi, N., Arai, M., Miki, H., Tsunekawa, M., and Hirajima, T., 2002. A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy, 63(3), 257-267.
16
Hiroyoshi, N., Kuroiwa, S., Miki, H., Tsunekawa, M., and Hirajima, T., 2004. Synergistic effect of cupric and ferrous ions on active-passive behavior in anodic dissolution of chalcopyrite in sulfuric acid, Hydrometallurgy, 74(1-2), 103-116.
17
Hiroyoshi, N., Tsunekawa, M., Okamoto, H., Nakayama, R., and S. Kuroiwa, 2008. Improved chalcopyrite leaching through optimization of redox potential. Can. Metall. Quart., 47(3), 253-258.
18
Jones, C.A. and Kelly, D.P., 1983. Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture: influence of product and substrate inhibition. J. Chem. Technol. Biotechno., 33(4), 241-261.
19
Khoshkhoo, M., Dopson, M., Shchukarev, A., and Sandstrom, A., 2014. Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate. Hydrometallurgy, 144-145, 7-14.
20
Kinzlera, K., Gehrkea, T., Telegdib, J., and Sand, W., 2003. Bioleaching-a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy, 71(1-2), 83-88.
21
Li, Y., Kawashima, N., Li, J., Chandra, A.P., and Gerson, A.R., 2013. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite, Adv. Colloid Interface Sci., 197-198, 1-32.
22
Lupo, J.F., 2010. Liner system design for Heap leach pads. Geotext. Geomembranes, 28(2), 163-173.
23
Nicol M, Miki, H. and Velasquez-Yevenes, L., 2010. The dissolution of chalcopyrite in chloride solutions: part 3. Mechanisms. Hydrometallurgy, 103(1-4), 86-95.
24
Ojumu, T.V., Petersen, J., Searby, G.E., and Hansford, G.S., 2006. A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to Heap bioleaching. Hydrometallurgy, 83(1-4), 21-28.
25
Olson, G.J., Brierley, J.A., and Brierley, C.L., 2003, Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol., 63(3), 249-257.
26
Panda, S., Sanjay, K., Sukla, L.B., Pradhan, N., Subbaiah, T., Mishra, B.K, Prasad, M.S.R., and Rav. S. K., 2012. Insights into heap bioleaching of low grade chalcopyrites ores; a pilot scale study. Hydrometallurgy, 125-126, 157-165.
27
Panda, S., Akcil, A., Pradhan, N., and Deveci, H. 2015. Review: Current scenario of chalcopyrite bioleaching: A review on the recent advances to its Heap-leach technology. Bioresour. Technol., 196, 694-706.
28
Petersen, J., 2010. Modelling of bioleach processes: Connection between science and engineering, Hydrometallurgy, 104(3-4), 404-409.
29
Rittmann, B.E. and McCarty, P.L., 2001. Environmental Biotechnology: Principles and Applications, 1st Ed., McGraw-Hill, NY, USA, p. 52-169.
30
Rohwerder T., Gehrke T., Kinzler K., and Sand W., 2003. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol., 63(3), 239-248.
31
Rodríguez, Y., Ballester, A., Blazquez, M.L., Gonzalez, F., and Munoz, J.A., 2003. Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite, and sphalerite. Geomicrobiol. J., 20, 131-141.
32
Sand, W. and Gehrke, T., 2006. Extracellular polymeric substances mediate bioleaching/ biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res. Microbiol., 157(1), 49-56.
33
Schippers, A., Hedrich, S., Vasters, J., Drobe, M., Sand, W., and Willscher, S., 2013. Biomining: metal recovery from ores with microorganism. Adv. Biochem. Eng. Biotechno., 141, 1-47.
34
Vargas, T., Davis-Belmar, C.S., and Cárcamo, C., 2014. Biological and chemical control in copper bioleaching processes: When inoculation would be of any benefit?. Hydrometallurgy, 150, 290-298.
35
Vilcáez, J., Suto, K., and Inoue, C., 2008. Bioleaching of chalcopyrite with thermophiles: temperature-pH-ORP dependence. Int. J. Miner. Process., 88(1-2), 37-44.
36
Watling, H.R., 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides - a review. Hydrometallurgy, 84(1-2), 81-108.
37
Yoo, K., Lee, J.C., Jeong, J., and Sohn J.S., 2008. The effect of the redox potential on the leaching of chalcopyrite in chloride media. J. of Mineral and Energy Resources, 45(2), 202-207.
38
Zeng, W., Qiu, G., Zhou, H., Liu, X., Chen, M., Chao, W., Zhang, C., and Peng, J., 2010. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate. Hydrometallurgy, 100(3-4), 177-180.
39
Zeng, W., Qiu, G., Zhou, H., and Chen, M., 2011. Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48°C, Hydrome-tallurgy, 105(3-4), 259-263.
40
Zhao, H., Wang, J., Yang, C., Hu, M., Gan, X., Tao, L., Qin, W., and Qiu, G., 2015. Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: An emphasis on solution compositions. Hydrometallurgy, 151, 141-150.
41
Zhou, S., Gan, M., Zhu, J., Li, Q., Jie, S., Yang, B., and Liu, X., 2015. Catalytic effect of light illumination on bioleaching of chalcopyrite. Bioresour. Technol., 182, 345-352.
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 54
  • No :6
  • Pages :690-699
  • Received Date : 2016-09-19
  • Revised Date : 2016-10-26
  • Accepted Date : 2017-12-22