All Issue

2009 Vol.46, Issue 1 Preview Page
28 February 2009. pp. 45-60
Abstract
A GIS model that combines fuzzy theory and Analytical Hierarchy Process (AHP) was developed to assess the slope instability in open pit coal mines. The model logic can consider 7 factors simultaneously (i.e., overall slope gradient, slope height, surface flows, excavation plan, tension crack, fault, waterbody) that influence the instability processes of open pit slopes. Using fuzzy membership functions, the normalized factor scores (0-1) which represent adverse affects of factors on slope stability can be assigned. The weight of each factor can be determined through the Saaty’s pairwise comparisons, a part of AHP. Finally, the slope instability index (0-1) can be calculated by the weighted linear combination of normalized factor scores. The application at the Roto South in the Pasir open pit coal mine, Indonesia showed that the proposed model could make rational solutions to effectively manage the risk of slope failures.
본 연구에서는 퍼지 이론과 계층분석절차 기법을 접목하여 대규모 석탄 노천광산의 상대적 사면붕괴 위험도를 평가할 수 있는 GIS 분석모델을 제시하였다. 분석모델은 7개의 영향인자들(사면의 각도, 사면높이, 지표수 영향, 굴착계획, 인장균열, 단층, 배후 저수지)을 동시에 고려하여 채굴적 연약사면의 상대적 붕괴 위험도를 평가할 수 있다. 퍼지 소속함수의 정의와 계층분석절차 기법을 이용한 가중치 결정을 통해 전문가의 판단이 모델의 인자들을 정량화하는데 반영될 수 있으며, GIS 데이터베이스를 모델과 연계하여 활용함으로써 채굴적 전체 사면들에 대한 공간적 분포 개념의 사면붕괴 위험도 평가를 가능하게 하였다. 인도네시아 파시르 석탄 노천광산의 적용결과, 제시된 분석모델이 사면관리 대책수립을 위한 예비 사면붕괴 위험도 분석 도구로서 효과적으로 활용될 수 있음을 확인할 수 있었다.
References
  1. 선우춘, 정소걸, 최성웅, 송원경, 박의섭, 2004, “탄전에서의 암반 이완발파와 사면안정에 관한연구,” KIGAM Bulletin, Vol. 8, pp. 15-27.
  2. 선우춘, 최요순, 박형동, 정용복, 2007, “GIS에 의한 대규모 노천광에서의 배수처리 및 사면안정 예측,” 터널과 지하공간(한국암반공학회지), Vol. 17, pp. 430-440.
  3. 이병주, 선우춘, 정소걸, 2001, “인도네시아 파시르탄전지역의 변형과정 및 사면내 불연속면 분석,” KIGAM Bulletin, Vol. 5, pp. 45-55.
  4. 정소걸, 선우춘, 한공창, 신희순, 박연준, 2000, “인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안정성 해석,” 터널과 지하공간(한국암반공학회지), Vol. 10, pp. 430-440.
  5. 최병희, 류동우, 선우춘, 2006, “파시르 탄광에서의 채탄발파공법에 대한 문제점 분석 및 개선방향 연구,” 화약・발파(대한화약발파공학회지), Vol. 24, pp. 57-62.
  6. 최요순, 선우춘, 박형동, 2006, “광해방지를 위한 대규모 석탄 노천광의 배수설계 최적화,” 한국지구시스템공학회지, Vol. 43, pp. 429-438.
  7. Akgun, A., Dag, S. and Bulut, F., 2008, “Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models,” Environmental Geology, Vol. 54, pp. 1127-1143.
  8. Atkinson, D. M., Deadman, P., Dudycha, D. and Traynor, S., 2005, “Multi-criteria evaluation and least cost path analysis for an arctic all-weather road,” Applied Geography, Vol. 25, pp. 287-307.
  9. Ayalew, L., Yamagishi, H., Marui, H. and Kanno, T., 2005, “Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications,” Engineering Geology, Vol. 81, pp. 432-445.
  10. Bascetin, A., 2007, “A decision support system using analytical hierarchy process (AHP) for the optimal environmental reclamation of an open-pit mine,” Environmental Geology, Vol. 52, pp. 663-672.
  11. Brabb, E. E., 1984, “Innovative approaches to landslide hazard and risk mapping,” Proceedings of the 4th International Symposium of Landslides, Vol. 2, Toronto, Canada, pp. 1037-1057.
  12. Bye, A. R. and Bell, F. G., 2001, “Stability assessment and slope design at Sandsloot open pit, South Africa,” International Journal of Rock Mechanics & Mining Sciences, Vol. 38, pp. 449-466.
  13. Cai, M., Xie, M. and Li, C., 2007, “GIS-based 3D limit equilibrium analysis for design optimization and of a 600 m high slope in an open pit mine,” Journal of University of Science and Technology Beijing, Vol. 14, pp. 1-5.
  14. Carrara, A., Cardinali, M., Guzzetti, F. and Reichenbach, P., 1995, “GIS technology in mapping landslide hazard,” In: Carrara, A. and Guzzetti, F. (eds), Geographical Information Systems in Assessing Natural Hazards, Kluwer Academic Publishers, Amsterdam, Netherlands, pp. 135-175.
  15. Chacon, J., Irigaray, C., Fernandez, T. and El Hamdouni, R., 2006, “Engineering geology maps: landslides and geographical information systems,” Bulletin of Engineering Geology and the Environment, Vol. 65, pp. 341-411.
  16. Eastman, J. R., 2006, “Decision support: uncertainty management,” In: IDRISI Andes Guide to GIS and Image Processing, Clark University, Worcester, USA, pp. 155-172.
  17. Ermini, L., Catani, F. and Casagli, N., 2005, “Artificial Neural Networks applied to landslide susceptibility assessment,” Geomorphology, Vol. 66, pp. 327-343.
  18. Gomez, H. and Kavzoglu, T., 2005, “Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basic, Venezuela,” Engineering Geology, Vol. 25, pp. 11-27.
  19. Guzzetti, F., Carrara, A., Cardinali, M. and Reichenbach, P., 1999, “Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy,” Geomorphology, Vol. 31, pp. 181-216.
  20. Haneberg, W. C., Creighton, A. L., Medley, E. W. and Jonas, D. A., 2005, “Use of LiDAR to assess slope hazards at Lihir gold mine, Papua New Guinea,” Proceedings of International Conference on Landslide Risk Management, Vancouver, Canada, , Cited 29 Sep 2008.
  21. Hartlen, J. and Viberg, L., 1988, “General report: evaluation of landslide hazard,” Proceedings of the 5th International Symposium of Landslide, Vol. 2, Lausanne, Switzerland, pp. 1037-1057.
  22. Irigaray, C., Fernandez, T., El Hamdouni, R. and Chacon, J., 2007, “Evaluation and vaidation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain),” Natural Hazards, Vol. 4, pp. 61-79.
  23. Jibson, R. W. and Keefer, D. K., 1989, “Statistical analysis of factors affecting landslide distribution in the New Madrid seismic zone, Tennessee and Kentucky,” Engineering Geology, Vol. 27, pp. 509-542.
  24. Kasmer, O. and Ulusay, R., 2006, “Stability of spoil piles at two coal mines in Turkey: Geotechnical characterization and design considerations,” Environmental and Engineering Geoscience, Vol. 12, pp. 337-352.
  25. KIGAM, 2003, Geotechnical study on the stabilization for the slopes of the Pasir coal mine, KIGAM Report No. KJA/02P/XII/01, Daejeon, Korea, 167p.
  26. Lee, S., 2005, “Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data,” International Journal of Remote Sensing, Vol. 26, pp. 1477-1491.
  27. Lee, S., 2007a, “Comparison of landslide susceptibility maps generated through multiple logistic regressions for three test areas in Korea,” Earth Surface Processes and Landforms, Vol. 32, pp. 2133-2148.
  28. Lee, S., 2007b, “Landslide susceptibility mapping using an artificial neural network in the Gangneung area, Korea,” International Journal of Remote Sensing, Vol. 28, pp. 4763-4783.
  29. Lee, S. and Choi, J., 2004, “Landslide susceptibility mapping using GIS and the weight-of-evidence model,” International Journal of Geographical Information Science, Vol. 18, pp. 789-814.
  30. Lee, S., Choi, J. and Min, K., 2002, “Landslide susceptibility analysis and verification using the Bayesian probability model,” Environmental Geology, Vol. 43, pp. 120-131.
  31. Lee, S. and Pradhan, B., 2007, “Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression model,” Landslides, Vol. 4, pp. 33-41.
  32. Lee, S. and Talib, J. A., 2005, “Probabilistic landslide susceptibility and factor effect analysis,” Environmental Geology, Vol. 47, pp. 982-990.
  33. McDermid, G. and Franklin, S., 1995, “Remote sensing and geomorphometric discrimination of slope processes,” Zeitschrift fur Geomorphologie, Vol. 101, pp. 165-185.
  34. Merrien-Soukatchoff, V. and Hadadou, R., 1997, “Monitoring and modelling by the distinct element method of a slope slipping,” International Journal of Surface Mining, Reclamation and Environment, Vol. 11, pp. 1-6.
  35. Nelson, E. P., Connors, K. A. and Suárez S., C., 2007, “GIS-Based Slope Stability Analysis, Chuquicamata Open Pit Copper Mine, Chile,” Natural Resources Research, Vol. 16, pp. 171-190.
  36. Obara, Y., Nakamura, N., Kang, S.S. and Kaneko, K., 2000, “Measurement of local stress and estimation of regional stress associated with stability assessment of an open-pit rock slope,” International Journal of Rock Mechanics and Mining Sciences, Vol. 37, pp. 1211-1221.
  37. Ohlmacher, G. C. and Davis, J. C., 2003, “Using multiple logistic regression and GIS technology to predic landslide hazard in northeast Kansas, USA,” Engineering Geology, Vol. 69, pp. 331-343.
  38. Patnayak, S., Reddy, K.N. and Gupta, R.N., 2002, “Slope stability analysis of a lead-zinc open pit mine using limit equilibrium and numerical methods,” International Journal of Surface Mining, Reclamation and Environment, Vol. 16, pp. 196-216.
  39. Saaty, T. L., 1977, “A scaling method for priorities in hierarchical structures,” Journal of Mathematical Psychology, Vol. 15, pp. 234-281.
  40. Samtan, 2007, “Annual Report,” , Cited 29 Sep 2008.
  41. Sharma, M. and Kumar, R., 2008, “GIS-based landslide hazard zonation: a case study from the Parwanoo area, Lesser and Outer Himalaya, H.P., India,” Bulletin of Engineering Geology and the Environment, Vol. 67, pp. 129-137.
  42. Singh, V.K., Prasad, M., Singh, S.K., Rao, D.G. and Singh, U.K., 1995, “Slope design based on geotechnical study and numerical modelling of a deep open pit mine in India,” International Journal of Surface Mining, Reclamation and Environment, Vol. 9, pp. 105-111.
  43. Singh, V.K. and Singh, T.N., 1999, “Geotechnical study of the optimum design of the Chandmari coppermine, Rajasthan, India,” Engineering Geology, Vol. 53, pp. 47-55.
  44. Singh, V. K., Singh, J. K. and Kumar, A., 2005, “Geotechnical study for optimizing the slope design of a deep open-pit mine, India,” Bulletin of Engineering Geology and the Environment, Vol. 64, pp. 303-309.
  45. Stead, D. and Eberhardt, E., 1997, “Developments in the analysis of footwall slopes in surface coal mining,” Engineering Geology, Vol. 46, pp. 41-61.
  46. Tosney, J.R., Milne, D., Chance, A.V. and Amon, F., 2004, “Verification of a large scale slope instability mechanism at Highland Valley Copper,” International Journal of Surface Mining, Reclamation and Environment, Vol. 18, pp. 273-288.
  47. Varnes, D. J., 1984, Landslide hazard zonation: a review of principles and practice, Natural Hazard No. 3, Commission on landslides and other mass movements on Slopes of the IAEG, UNESCO, Paris. 61p.
  48. Wang, J., Tan, W., Feng, S. and Zhou, R., 2000, “Reliability analysis of an open pit coal mine slope,” International Journal of Rock Mechanics & Mining Sciences, Vol. 37, pp. 715-721.
  49. Wei, Z., Yin, G., Wan, L. and Shen, L., 2008, “Case history of controlling a landslide at Panluo open-pit mine in China,” Environmental Geology, Vol. 54, pp. 699-709.
  50. Xie, M., Esaki, T., Qiu, C. and Jia, L., 2007, “Spatial threedimensional landslide susceptiblity mapping tool and its application,” Earth Science Frontiers, Vol. 14, pp. 73-84.
  51. Yalcin, A., 2008, “GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations,” CATENA, Vol. 72, pp. 1-12.
  52. Yalcin, A. and Bulut, F., 2007, “Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey),” Natural Hazards, Vol, 41, pp. 201-226.
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society for Geosystem Engineering
  • Journal Title(Ko) :한국지구시스템공학회지
  • Volume : 46
  • No :1
  • Pages :45-60