All Issue

2021 Vol.58, Issue 4 Preview Page

Review

August 2021. pp. 353-363
Abstract
References
1
Cai, P. and Tsvankin, I., 2013. Tomographic velocity analysis of PP-and PS-waves for VTI Media: field data application, SEG Annual Meeting, Houston, Texas, USA, p.22-27. 10.1190/segam2013-0783.1
2
Feblowitz, J., 2012. The big deal about big data in upstream oil and gas, IDC Energy Insights, Needham, Massachusetts, USA, p.1-11.
3
Feng, R., 2021. Improving uncertainty analysis in well log classification by machine learning with a scaling algorithm, Journal of Petroleum Science and Engineering, 196, 107995p. 10.1016/j.petrol.2020.107995
4
Feng, R., Grana, D., and Balling, N., 2021. Imputation of missing well log data by random forest and its uncertainty analysis, Computers & Geosciences, 152, 104763p. 10.1016/j.cageo.2021.104763
5
Gupta, I., Tran, N., Devegowda, D., Jayaram, V., Rai, C., Sondergeld, C., and Karami, H., 2020. Looking ahead of the bit using surface drilling and petrophysical data: machine- learning-based real-time geosteering in Volve field, SPE Journal, 25(2), p.990-1006. 10.2118/199882-PA
6
Ji, M., Kwon, S., Park, G., Min, B., and Huy, N.X., 2021. Prediction of water saturation from well log data using deep learning algorithms, Journal of the Korean Society of Mineral and Energy Resources Engineers, 58(3), p.215-226. 10.32390/ksmer.2021.58.3.215
7
Jiang, L., Castagna, J. P., and Russell, B., 2020. Porosity prediction using machine learning, SEG International Exposition and Annual Meeting, Virtual, October 11-16, SEG-2020-W13-04. 10.1190/segam2020-w13-04.1
8
Jung, H., Jo, H., Kim, S., Lee, K., and Choe, J., 2017. Recursive update of channel information for reliable history matching of channel reservoirs using EnKF with DCT, Journal of Petroleum Science and Engineering, 154, p.19-37. 10.1016/j.petrol.2017.04.016
9
Karkevandi-Talkhooncheh, A., Sharifi, M., and Ahmadi, M., 2018. Application of hybrid adaptive neuro-fuzzy inference system in well placement optimization, Journal of Petroleum Science and Engineering, 166, p.924-947. 10.1016/j.petrol.2018.03.050
10
Karstens, J., Ahmed, W., Berndt, C., and Class, H., 2017. Focused fluid flow and the sub-seabed storage of CO2: evaluating the leakage potential of seismic chimney structures for the sleipner CO2 storage operation, Marine and Petroleum Geology, 88, p.81-93. 10.1016/j.marpetgeo.2017.08.003
11
Li, Y., Sun, R., and Horne, R., 2019. Deep learning for well data history analysis, SPE Annual Technical Conference and Exhibition, Calgary, Canada, September 30-October 2, SPE-196011-MS. 10.2118/196011-MS
12
Miah, M.I., Zendehboudi, S., and Ahmed, S., 2020. Log data-driven model and feature ranking for water saturation prediction using machine learning approach, Journal of Petroleum Science and Engineering, 107291p. 10.1016/j.petrol.2020.107291
13
Morton, A., Woje, G., Berg, E. W., Vuillermoz, C., and Rollet, A., 2003. Evaluation and impact of sparse-grid, wide-azimuth 4C-3D node data from the north sea, SEG Annual Meeting, Dallas, Texas, USA, October 26-31, SEG-2003-0826. 10.1190/1.1818064
14
Noshi, C.I., Eissa, M.R., and Abdalla, R.M., 2019. An intelligent data driven approach for production prediction, Offshore Technology Conference, Houston, Texas, USA, May 6-9, OTC-29243-MS.
15
Otchere, D.A., Ganat, T.O.A., Gholami, R., and Lawal, M., 2021. A novel custom ensemble learning model for an improved reservoir permeability and water saturation prediction, Journal of Natural Gas Science and Engineering, 91, 103962p. 10.1016/j.jngse.2021.103962
16
Park, G., Kwon, S., Ji, M., Min, B., Huy, N.X., Kim, K., Kim, S., and Lee, K.B., 2021. A review on deep learning applications to logging data for modeling gas-hydrate-bearing sediments, Journal of the Korean Society of Mineral and Energy Resources Engineers, 58(2), p.161-178. 10.32390/ksmer.2021.58.2.161
17
Ravasi, M., Vasconcelos, I., Kritski, A., Curtis, A., da Costa Filho, C. A., and Meles, G. A., 2015a. Marchenko imaging of Volve field, north sea, 77th EAGE Conference and Exhibition, Madrid, Spain, June 1-4, 2015(1), p.1-5. 10.3997/2214-4609.201412938
18
Ravasi, M., Vasconcelos, I., Curtis, A., and Kritski, A., 2015b. Multi-dimensional free-surface multiple elimination and source deblending of Volve OBC data, 77th EAGE Conference and Exhibition, Madrid, Spain, June 1-4, cp-451-00802. 10.3997/2214-4609.201413355
19
Ravasi, M., Vasconcelos, I., Curtis, A., and Kristi, A., 2015c. Vector-acoustic reverse time migration of Volve ocean-bottom cable data set without up/down decomposed wavefields, Geophysics, 80(4), p.S137-S150. 10.1190/geo2014-0554.1
20
Ravasi, M., Vasconcelos, I., Kritski, A., Curtis, A., Filho, C.A. D.C., and Meles, G.A., 2016. Target-oriented marchenko imaging of a north sea field, Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society,205(1), p.99-104. 10.1093/gji/ggv528
21
Singh, A., Bhardwaj, P., and Biswas, S., 2020. Building a model for reservoir characterisation in GIS using machine learning. the international archives of photogrammetry, Remote Sensing and Spatial Information Sciences, 43, p.501-506. 10.5194/isprs-archives-XLIII-B4-2020-501-2020
22
Statoil. 2005. Plan for utbygging og drift av Volve. Retrived from, 2020.09.11., https://data-equinor-com.azurewebsites.net/dataset/volve.
23
Szydlik, T.J., Way, S., Smith, P., Aamodt, L., and Friedrich, C., 2006. 3D PP/PS prestack depth migration on the Volve field, 68th EAGE Conference and Exhibition incorporating SPE EUROPEC 2006, Vienna, Austria, June 12-15, cp-2-00185.
24
Thompson, M., Arntsen, B., and Amundsen, L., 2007. Full-azimuth imaging through consistent application of ocean-bottom seismic, SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, San Antonio, Texas, p.936-940. 10.1190/1.2792560
25
Tsvankin, I. and Wang, X., 2013. Tomographic inversion of p-wave data for TTI media-application to field data, 75th EAGE Conference and Exhibition incorporating SPE EUROPEC 2006, London, United Kingdom, June 10-13, cp-348. 10.3997/2214-4609.20130075
26
Tunkiel, A.T., Sui, D., and Wiktorski, T., 2021. Reference dataset for rate of penetration benchmarking, Journal of Petroleum Science and Engineering, 196, 108069p. 10.1016/j.petrol.2020.108069
27
Wang, B., Sharma, J., Chen, J., and Persaud, P., 2021. Ensemble machine learning assisted reservoir characterization using field production data-an offshore field case study, Energies, 14(4), 1052p. 10.3390/en14041052
28
Wang, X. and Tsvankin, I., 2013. Multiparameter TTI tomography of p-wave reflection and VSP data, Geophysics, 78(5), p.WC51-WC63. 10.1190/geo2012-0394.1
29
Z. Losoya, E., Vishnumolakala, N., Gildin, E., Noynaert, S., Medina-Cetina, Z., Gabelmann, J., Glowka, D., and Houston, R., 2020. Machine learning based intelligent downhole drilling optimization system using an electromagnetic short hop bit dynamic measurements, SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, October 5-7, SPE-201572-MS. 10.2118/201572-MS
30
Zanjani, M.S., Salam, M.A., and Kandara, O., 2020. Data-Driven hydrocarbon production forecasting using machine learning techniques, International Journal of Computer Science and Information Security, 18(6).
31
Zborowski, M., Boschee, P., Jacobs, T., and Whitfield, S., 2018. E&P Notes (August 2018), Journal of Petroleum Exploration and Production Technology, 70(8), p.24-27. 10.2118/0818-0024-JPT
32
Zhang, Z.D. and Alkhalifah, T., 2020. High-resolution reservoir characterization using deep learning-aided elastic full- waveform inversion: the north sea field data example, Geophysics, 85(4), p.WA137-WA146. 10.1190/geo2019-0340.1
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 58
  • No :4
  • Pages :353-363
  • Received Date :2021. 07. 20
  • Revised Date :2021. 08. 25
  • Accepted Date : 2021. 08. 26