All Issue

2020 Vol.57, Issue 5 Preview Page

Review

31 October 2020. pp. 495-505
Abstract
References
1
Abd El-Rahman, M.K., Mishra, B.K., and Rajamani, R.K., 2001. Industrial tumbling mill power prediction using the discrete element method. Minerals Engineering, 14(10), p.1321-1328.
10.1016/S0892-6875(01)00146-7
2
Austin, L.G. and Luckie, P.T., 1972. Methods for determination of breakage distribution parameters. Powder Technology, 5(4), p.215-222.
10.1016/0032-5910(72)80022-6
3
Austin, L.G., Klimpel, R.R., and Luckie, P.T., 1984. Process Engineering of Size Reduction: Ball Milling, Society of Mining Engineers, New York, U.S., 561p.
4
Barrasso, D., Tamrakar, A., and Ramachandran, R., 2015. Model Order Reduction of a Multi-scale PBM-DEM Description of a Wet Granulation Process via ANN. Procedia Engineering, 102, p.1295-1304.
10.1016/j.proeng.2015.01.260
5
Basinskas, G. and Sakai, M., 2016. Numerical study of the mixing efficiency of a ribbon mixer using the discrete element method. Powder Technology, 287, p.380-394.
10.1016/j.powtec.2015.10.017
6
Benvenuti, L., Kloss, C., and Pirker, S., 2016. Identification of DEM simulation parameters by Artificial Neural Networks and bulk experiments. Powder Technology, 291, p.456-465.
10.1016/j.powtec.2016.01.003
7
Bnà, S., Ponzini, R., Cestari, M., Cavazzoni, C., Cottini, C., and Benassi, A., 2020. Investigation of particle dynamics and classification mechanism in a spiral jet mill through computational fluid dynamics and discrete element methods. Powder Technology, 364, p.746-773.
10.1016/j.powtec.2020.02.029
8
Bond, F.C. 1952. The third theory of comminution. Transaction of the AIME, 193(1), p.484-494.
9
Brosh, T., Kalman, H., Levy, A., Peyron, I., and Ricard, F., 2014. DEM-CFD simulation of particle comminution in jet-mill. Powder Technology, 257, p.104-112.
10.1016/j.powtec.2014.02.043
10
Capece, M., Davé, R.N., and Bilgili, E., 2018. A pseudo- coupled DEM-non-linear PBM approach for simulating the evolution of particle size during dry milling. Powder Technology, 323, p.374-384.
10.1016/j.powtec.2017.10.008
11
Carvalho, R.M. and Tavares, L.M., 2009. Dynamic modeling of comminution using a general microscale breakage model. Computer Aided Chemical Engineering, 27, p.519-524.
10.1016/S1570-7946(09)70307-4
12
Chaudhury, A., Oseledets, I., and Ramachandran, R., 2014. A computationally efficient technique for the solution of multi-dimensional PBMs of granulation via tensor decomposition. Computers & Chemical Engineering, 61, p.234-244.
10.1016/j.compchemeng.2013.10.020
13
Cho, N. Martin, C.D., and Sego, D.C., 2007. A clumped particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 44(7), p.997-1010.
10.1016/j.ijrmms.2007.02.002
14
Cleary, P.W. and Sinnott, M.D., 2015. Simulation of particle flows and breakage in crushers using DEM: Part 1 - Compression crushers. Minerals Engineering, 74, p.178-197.
10.1016/j.mineng.2014.10.021
15
Cleary, P.W., 1998. Predicting charge motion power draw, segregation and wear in ball mills using discrete element methods. Minerals Engineering, 11(11), p.1061-1080.
10.1016/S0892-6875(98)00093-4
16
Cleary, P.W., 2001. Charge behaviour and power consumption in ball mills, sensitivity to mill operating conditions, liner geometry and charge composition. International Journal of Mineral Processing, 63(2), p.79-114.
10.1016/S0301-7516(01)00037-0
17
Cleary, P.W., 2004. Large scale industrial DEM modelling. Engineering Computations, 21(2), p.169-204.
10.1108/02644400410519730
18
Cleary, P.W., Cummins, S.J., Sinnott, M.D., Delaney, G.W., and Morrison, R.D., 2020. Advanced comminution modelling: Part 2 - mills. Applied Mathematical Modelling, 88, p.307- 348.
10.1016/j.apm.2020.06.048
19
Cunha, E.R.D., Carvalho, R.M.D., and Tavares, L.M., 2013. Simulation of solids flow and energy transfer in a vertical shaft impact crusher using DEM. Minerals Engineering, 43, p.85-90.
10.1016/j.mineng.2012.09.003
20
Dallimore, M.P. and McCormick, P.G., 1996. Distinct element modelling of mechanical alloying in a planetary ball mill. Materials Science Forum, 235, p.5-14.
10.4028/www.scientific.net/MSF.235-238.5
21
Datta, A., Mishra, B.K., and Rajamani, R.K., 1999. Analysis of power draw in ball mills by the discrete element method. Canadian Metallurgical Quarterly, 38(2), p.133-140.
10.1016/S0008-4433(98)00039-1
22
Djordjevic, N., 2005. Influence of charge size distribution on net-power draw of tumbling mill based on DEM modelling. Minerals Engineering, 18(3), p.375-378.
10.1016/j.mineng.2004.06.001
23
Feng, Y., Han, K., and Owen, D., 2014. Discrete element modelling of large-scale systems-i: exact scaling laws. Comput. Part. Mech., 1(2), p.159-168.
10.1007/s40571-014-0010-y
24
Feng, Y., Han, K., Owen, D., and Loughran, J., 2009. On upscaling of discrete element models: similarity principles. Eng. Comput., 26(6), p.599-609.
10.1108/02644400910975405
25
Herbst, J.A. and Fuerstenau, D.W., 1980. Scale-up procedure for continuous grinding mill design using population balance models. International Journal of Mineral Processing, 7(1), p.1-31.
10.1016/0301-7516(80)90034-4
26
Hlungwani, O., Rikhotso, J., Dong, H., and Moys, M.H., 2003. Further validation of DEM modeling of milling-effects of liner profile and mill speed. Minerals Engineering, 16(10), p.993-998.
10.1016/j.mineng.2003.07.003
27
Hoyer, D.I., 1999. The discrete element method for fine grinding scale-up in Hicom mills. Powder Technol.,105(1), p.250-256.
10.1016/S0032-5910(99)00145-X
28
Inoue, T. and Okaya, K., 1996. Grinding mechanism of centrifugal mills-a simulation study based on the discrete element method. Int. J. Miner. Process., 45, p.425-435.
10.1016/0301-7516(95)00049-6
29
Iwasaki, T., Yabuuchi, T, Nakagawa, T., and Watano, T., 2010. Scale-up methodology for tumbling ball mill based on impact energy of grinding balls using discrete element analysis. Advanced Powder Technology, 21(6), p.623-629.
10.1016/j.apt.2010.04.008
30
Khanal, M., 2005. Simulation of Crushing Dynamics of an Aggregate-Matrix Composite by Compression and Impact Stressings, Process and System Engineering, Docupoint- Verlag, 205p.
31
Kick, F., 1885. Das Gesetz der proportionalen Widerstande und seine anwendung. Verlag von Arthur Felix, Leipzig, Germany.
32
Knight, J.B., Jaeger, H.M., and Nagel, S.R., 1993. Vibration- induced size separation in granular media,the convection connection. Physical Review Letters, 70 p.3728-3731.
10.1103/PhysRevLett.70.372810053947
33
Kou, M.M., Lian, Y.J., and Wang, Y.T., 2019. Numerical investigations on crack propagation and crack branching in brittle solids under dynamic loading using bond-particle model. Engineering Fracture Mechanics, 212, p.41-56.
10.1016/j.engfracmech.2019.03.012
34
Kuwagi, K., Takeda, H., and Horio, M., 2004. The similar particle assembly (SPA) model: an approach to large-scale discrete element (DEM) simulation. Proceedings of the international conference on fluidization engineering XI, Ischia, Naples, 243250.
35
Kwon, J. Kim, H. Lee, S., and Cho, H., 2017. Simulation of particle-laden flow in a Humphrey spiral concentrator using dust-liquid smoothed particle hydrodynamics. Advanced Powder Technology, 28(10), p.2694-2705.
10.1016/j.apt.2017.07.022
36
Lichter, J., Lim, K., Potapov, A., and Kaja, D., 2009. New developments in cone crusher performance optimization. Minerals Engineering, 22(7), p.613-617.
10.1016/j.mineng.2009.04.003
37
Mackey, P.J. and Nessett, J.E., 2003. The impact of commissioning and start-up performance on a mining/ metallurgical project. 35th Annual Meeting of the Canadian Mineral Processors, CIM, Ottawa, Canada, p.21-23.
38
Metta, N., Ierapetritou, M., and Ramachandran, R., 2018. A multiscale DEM-PBM approach for a continuous comilling process using a mechanistically developed breakage kernel. Chemical Engineering Science, 178, p.211-221.
10.1016/j.ces.2017.12.016
39
Metta, N., Ramachandran, R., and Ierapetritou, M. 2019. A computationally efficient surrogate-based reduction of a multiscale comill process model. Journal of Pharmaceutical Innovation, 15, p.424-444.
10.1007/s12247-019-09388-2
40
Mishra, B.K. and Rajamani, R.K., 1992. The discrete element method for the simulation of ball mills. Applied Mathematical Modelling, 16(11), p.598-604.
10.1016/0307-904X(92)90035-2
41
Mishra, B.K. and Rajamani, R.K., 1994. Simulation of charge motion in ball mills. Part 1: experimental verifications. International Journal of Mineral Processing, 40(3), p.171-186.
10.1016/0301-7516(94)90042-6
42
Mishra, B.K. and Thornton, C., 2001. Impact breakage of particle agglomerates. International Journal of Mineral Processing, 61(4), p.225-239.
10.1016/S0301-7516(00)00065-X
43
Mishra, B.K. and Thornton, C., 2002. An improved contact model for ball mill simulation by the discrete element method. Advanced Powder Technology, 13(1), p.25-41.
10.1163/15685520252900938
44
Mishra, B.K., and Tripathy, A., 2010. A preliminary study of particle separation in spiral concentrators using DEM. International Journal of Mineral Processing, 94(3), p.192-195.
10.1016/j.minpro.2009.12.005
45
Misra, A. and Cheung, J., 1999. Particle motion and energy distribution in tumbling ball mills. Powder Technology, 105(1), p.222-227.
10.1016/S0032-5910(99)00141-2
46
Monama, G.M. and Moys, M.H., 2002. DEM modelling of the dynamics of mill startup. Minerals Engineering, 15(7), p.487-492.
10.1016/S0892-6875(02)00071-7
47
Mori, H., Mio, H., Kano, J., and Saito, F., 2004. Ball mill simulation in wet grinding using a tumbling mill and its correlation to grinding rate. Powder Technology, 143, p.230-239.
10.1016/j.powtec.2004.04.029
48
Morrison, R. D., Shi, F., and Whyte, R., 2007. Modelling of incremental rock breakage by impact - For use in DEM models. Minerals Engineering, 20(3), 303-309.
10.1016/j.mineng.2006.10.015
49
Patel, S. and Martin, C.D., 2020. Impact of the initial crack volume on the intact behavior of a bonded particle model. Computers and Geotechnics, 127, p.103764.
10.1016/j.compgeo.2020.103764
50
Potyondy, D.O. and Cundall, P.A., 2004. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8). p.1329-1364.
10.1016/j.ijrmms.2004.09.011
51
Powell, M.S. and McBride A.T., 2004. A three-dimensional analysis of media motion and grinding regions in mills. Minerals Engineering, 17(11), p.1099-1109.
10.1016/j.mineng.2004.06.022
52
Rittinger, R.P.v. 1867. Lehrbuch der Aufbereitungskunde. Ernst and Korn, Berlin, Germany.
53
Sakai, M. and Koshizuka, S., 2009. Large-scale discrete element modeling in pneumatic conveying. Chem. Eng. Sci., 64(3), p.533-539.
10.1016/j.ces.2008.10.003
54
Sato, A., Kano, J., and Saito, F., 2010. Analysis of abrasion mechanism of grinding media in a planetary mill with DEM simulation. Advanced Powd. Tech., 21(2), p.212-216.
10.1016/j.apt.2010.01.005
55
Schubert, W. and Jeschke, H., 2005. DEM-simulation of the Breakage Process in an Impact Crusher. New Orders of the Comminution, Otto-von-Guericke-universität, Magdeburg.
56
Schumacher, P., Radjai, F., and Roux, S., 2015. Effects of flow thickness on the shear behavior. IVth International Conference on Particle-Based Methods (Particles 2015), ICNME, Barcelona, Spain, p.28-30.
57
Sinnott, M., Cleary, P.W., and Morrison, M., 2006. Analysis of stirred mill performance using DEM simulation: Part 1- Media motion, energy consumption and collisional environment. Minerals Engineering, 19(15), p.1537-1550.
10.1016/j.mineng.2006.08.012
58
Stewart, R.L. Bridgwater, J., Zhou, Y.C., and Yu, A.B., 2001, Simulated and measured flow of granules in a bladed mixer-a detailed comparison. Chemical Engineering Science, 56(19), p.5457-5471.
10.1016/S0009-2509(01)00190-7
59
Tavares, L.M. and Carvalho, R.M., 2009. Modeling breakage rates of coarse particles in ball mills. Minerals Engineering. 22(7), 650-659.
10.1016/j.mineng.2009.03.015
60
van Nierop, M.A., Glover, G., Hinde, A.L., and Moys, M.H., 2001. A discrete element method investigation of the charge motion and power draw of an experimental two-dimensional mill. International Journal of Mineral Processing, 61(2), p.77-92.
10.1016/S0301-7516(00)00028-4
61
van Nierop, M.A., Glover, G., van Tonder, J.C., and Moys, M.H., 1999. 2D DEM verification, Load behaviour and forces on a lifter bar. Journal of the South African Institute of Mining and Metallurgy, 99, p.93-96.
62
Vogel, L. and Peukert, W., 2002. Characterisation of grinding- relevant particle properties by inverting a population balance model. Particle and Particle Systems Characterization, 19(3), 149-157.
10.1002/1521-4117(200207)19:3<149::AID-PPSC149>3.0.CO;2-8
63
Vogel, L. and Peukert, W., 2003. Breakage behaviour of different materials - Construction of a master curve for the breakage probability. Powder Technology, 129(1), p.101-110.
10.1016/S0032-5910(02)00217-6
64
Vogel, L. and Peukert, W., 2004. Determination of material properties relevant to grinding by practicable labscale milling tests. International Journal of Mineral Processing, 74(SUPPL.), p.329-338.
10.1016/j.minpro.2004.07.018
65
Wang, M. H., Yang, R. Y., and Yu, A. B., 2012. DEM investigation of energy distribution and particle breakage in tumbling ball mills. Powder Technology, 223, p.83-91.
10.1016/j.powtec.2011.07.024
66
Whiten, W.J., 1974. A matrix theory of comminution machines. Chemical Engineering Science, 29(2), p.589-599.
10.1016/0009-2509(74)80070-9
67
Yen, K.Z.Y. and Chaki, T.K., 1992. A dynamic simulation of particle rearrangement in powder packings with realistic interactions. Journal of Applied Physics, 71(7), p.3164-3173.
10.1063/1.350958
68
Yu, A.B., An, X.Z., Zou, R.P., Yang, R.Y., and Kendall, K., 2006. Self-assembly of particles for densest packing by mechanical vibration. Physical Review Letters, 97, 265501.
10.1103/PhysRevLett.97.26550117280427
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 57
  • No :5
  • Pages :495-505
  • Received Date : 2020-09-04
  • Revised Date : 2020-09-24
  • Accepted Date : 2020-10-27