All Issue

2021 Vol.58, Issue 3

Research Paper

30 June 2021. pp. 205-214
Abstract
References
1
Bae, S.M., Kim., H.K., Kim., H.W., and Nam, Y.J., 2017. Study on the Underground Thermal Environment around Wells for a Design Method of Open-Loop Geothermal System, Korea Society of Geothermal Energy Engineers, 13(1), p.14-20. 10.17664/ksgee.2017.13.1.014
2
Brown, K., 2013. Mineral scaling in geothermal power production, United Nations University Geothermal training program, Reports 2013-39, Reykjavik, Iceland, p.1-25.
3
Camacho, D., 2017. The Geochemistry of Silica in Icelandic Geothermal Systems, MS Thesis, United Nations University, Reykjavik, Iceland, p.1-25.
4
Candela, C., Brodsky, E.E., Maronea, C., and Elsworth, D., 2014. Laboratory evidence for particle mobilization as a mechanism for permeability enhancement via dynamic stressing, Earth and Planetary Science Letters, 392. p.279-291. 10.1016/j.epsl.2014.02.025
5
Carlson, R.W., Grove, T.L., and Donnelly-Nolan, J.M., 2018. Origin of Primitive Tholeiitic and Calc-Alkaline Basalts at Newberry Volcano, Oregon, Geochemistry, Geophysics, Geosystems, 19(4), p.1360-1377. 10.1029/2018GC007454
6
Caulk, R.A., Ghazanfari, E., Perdrial, J.N., and Perdrial, N., 2016. Experimental investigation of fracture aperture and permeability change within Enhanced Geothermal Systems, Geothermics, 62. P.12-21. 10.1016/j.geothermics.2016.02.003
7
Chandrasekharam, D., Lashin, A., Arifi, N.A., Bassam, A.A., Alfy, M.E., Ranjith, P.G., Varun, C., and Singh, H.K., 2015. The potential of high heat generating granites as EGS source to generate power and reduce CO2 emissions, western Arabian shield, Saudi Arabia, Journal of African Earth Sciences, 112, p.213-233. 10.1016/j.jafrearsci.2015.09.021
8
Cladouhos, T., Petty, S., Swyer, M., Uddenberg, M., Grasso, K., and Nordin, Y., 2016. Results from Newsberry volcano EGS Demonstration, 2010-2014, Geothermics, 3, p.44-61. 10.1016/j.geothermics.2015.08.009
9
Fournier, R. and Rowe, J., 1966. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells, American Journal of Science, 264(9), p.685-697. 10.2475/ajs.264.9.685
10
Gallup, D.L., 2009. Production engineering in geothermal technology: A review, Geothermics, 38(3), p.326-334. 10.1016/j.geothermics.2009.03.001
11
Graettinger, A.H., McGarvie, D.W., Skilling, I.P., Höskuldsson, A.H., and Strand, K., 2019. Ice-confined construction of a large basaltic volcano-Austurfjöllmassif, Askja, Iceland, Bulletin of Volcanology, 81(9), p.1-23. 10.1007/s00445-019-1269-x
12
Gunnlaugsson, E., Armannsson, H., Thorhallsson, S., and Steingrimsson, B., 2014. Problems in geothermal operation scaling and corrosion, Short Course VI on utilization of low- and medium enthalpy geothermal resources and financial aspects of utilization, UNU-GTP and LaGeo, Santa Tecla, El Salvador, p.1-18.
13
Heuvel, D.B.v.d., Gunnlaugsson, E., Gunnarsson, I., Stawski, T.M., Peacock, C.L., and Benning, L.G., 2018. Understanding amorphous silica scaling under well-constrained conditions inside geothermal pipelines, Geothermics, 76, p.231-241. 10.1016/j.geothermics.2018.07.006
14
Jiang, P., Li, X., Xu, R., and Zhang. F., 2016. Heat extraction of novel underground well pattern systems for geothermal energy exploitation, Renewable Energy, 90, p.83-94. 10.1016/j.renene.2015.12.062
15
Lee, J.B. and Chung, E.H., 2020. Application of geochemical modelling for hydraulic stimulation in enhanced geothermal systems, Geosystem Engineering, 23(6), p.342-350. 10.1080/12269328.2020.1832923
16
Lee, T.J., Lee, S.K., Lee, C.K., Park, I.H., Song, Y.H., and Uchida, T., 2008. Two-dimensional Magnetotelluric Surveys for Investigating Possible Deep Geothermal Regime in the Mid-mountain Area of Jeju Island, Journal of the Korean Society of Mineral and Energy Resources Engineers, 45(4), p.315-325.
17
Luo, J., Zhu, Y., Guo, G., Tan, L., Zhuang, Y., Liu, M., Zhang, C., Xiang, W., and Rohn, J., 2017. Experimental investigation of the hydraulic and heat-transfer properties of artificially fractured granite, Scientific Reports, 7, p.1-10. 10.1038/srep3988228054594PMC5215676
18
Luo, J., Zhu, Y., Guo, Q., Tan, L., Zhuang, Y., Liu, M., Zhang, C., Zhu, M., and Xiang, W., 2018. Chemical stimulation on the hydraulic properties of artificially fractured granite for enhanced geothermal system, Energy, 142, p.754-764. 10.1016/j.energy.2017.10.086
19
Mahbaz, S., Yaghoubi, A., Dehghani-Sanij, A., Sarvaramini, E., Leonenko, Y., and Dusseault, M.B., 2021. Well-Doublets: A First-Order Assessment of Geothermal SedHeat Systems, Applied Sciences, 11(2), p.1-18. 10.3390/app11020697
20
Mutonga, M.W., 2007. The isotopic and chemical characteristics of geothermal fluids in Hengill area, SW-Icelands : Hellisheidi, Hyeragerdi and Nesjavellir fields, World Geothermal Congress 2007. Bali, Indonesia, p.333-369.
21
Nitschke, F., 2017. Numerical and Experimental Characterization of Dissolution and Precipitation Processes in Deep Geothermal Reservoirs, Phd Thesis 2017, Des Karlsruher Instituts für Technologie (KIT).
22
Nouraliee, J., 2000. Borehole Geology and Hydrothermal Alteration of Well NJ-20, Nesjavellir High-Temperature Area, SW-Iceland, United Nations University, Geothermal Training Program. 2000(15), p.303-330.
23
Olasolo, P., Juárez, M.C., Morales, M.P., Amico, S.D., and Liarte, I.A., 2016. Enhanced geothermal systems (EGS): A review, Renewable and Sustainable Energy Reviews, 56, p.133-144. 10.1016/j.rser.2015.11.031
24
Park, Y.G., Kwon, K.S., Kim. N.J., Lee, J.Y., and Yoon, J.G., 2013. Change of geochemical properties of groundwater by use of open loop geothermal cooling and heating system, Journal of the Geological Society of Korea, 49(2), p.289-296.
25
Park, Y.Y., Mok, J.K., Jang, B.J., Lee, J.Y., and Park, Y.C., 2015. Influence of closed loop ground source heat pumps on groundwater: a case study, Journal of the Geological Society of Korea, 51(2). p.243-251. 10.14770/jgsk.2015.51.2.243
26
Portier, S. and Vuataz, F.D., 2010. Developing the ability to model acid-rock interactions and mineral dissolution during the RMA stimulation test performed at the Soultz-sous- Forêts EGS site, France, Comptes Rendus Geoscience, 342(7-8), p.668-675. 10.1016/j.crte.2010.04.002
27
Sahar, S., Zarandi, M., and Ivarsson, G., 2010. A review on waste water disposal at the Nesjavellir geothermal power plant, Proceedings World Geothermal Congress 2010. Bali, Indonesia, p.25-29.
28
Scherff, A., 2016. Iceland Deep Drilling Project: A case study of a magma-enhanced geothermal system, Advanced Drilling Technology Topics.
29
Yasuhara, H., Kinoshita, N., Ohfuji, H., Lee, D.S., Nakashima, S., and Kishida, K., 2011. Temporal alteration of fracture permeability in granite under hydrothermal conditions and its interpretation by coupled chemo-mechanical model, Applied geochemistry, 26(12), p.2074-2088. 10.1016/j.apgeochem.2011.07.005
30
Yilmaz, C., 2017. Thermodynamic and economic investigation of geothermal powered absorption cooling system for buildings, Geothermics, 70, p.239-248. 10.1016/j.geothermics.2017.06.009
31
Yuan, B. and Wood, D.A., 2018. A holistic review of geosystem damage during unconventional oil, gas and geothermal energy recovery, Fuel, 227, p.99-110. 10.1016/j.fuel.2018.04.082
32
Zarandi, S. and Ivarsson, G., 2010. A review on waste water disposal at the Nesjavellir geothermal power plant, Proceedings World Geothermal Congress.
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 58
  • No :3
  • Pages :205-214
  • Received Date : 2021-05-27
  • Revised Date : 2021-06-22
  • Accepted Date : 2021-06-25