All Issue

2024 Vol.61, Issue 5 Preview Page

General Remarks

31 October 2024. pp. 419-438
Abstract
References
1

Amini, D., Haghighat, E., and Juanes, R, 2022. Physics-informed neural network solution of thermo-hydro-mechanical processes in porous media, Journal of Engineering Mechanics, 148(11), 04022070.

10.1061/(ASCE)EM.1943-7889.0002156
2

Bang, H.T., Yoon, S., and Jeon, H., 2020. Application of machine learning methods to predict a thermal conductivity model for compacted bentonite, Annals of Nuclear Energy, 142, 107395.

10.1016/j.anucene.2020.107395
3

Benisch, K., Wang, W., Delfs, J.O., and Bauer, S., 2020. The OGS-Eclipse code for simulation of coupled multiphase flow and geomechanical processes in the subsurface, Computational Geosciences, 24, p.1315-1331.

10.1007/s10596-020-09951-8
4

Birkholzer, J.T., Tsang, C.F., Bond, A.E., Hudson, J.A., Jing, L., and Stephansson, O., 2019. 25 years of DECOVALEX-Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes, International Journal of Rock Mechanics and Mining Sciences, 122, 103995.

10.1016/j.ijrmms.2019.03.015
5

Blanco, M.L., Rutqvist, J., Birkholzer, J.T., and Battistelli, A, 2015. June, Long-term modeling of coupled processes in a generic salt repository for heat-generating nuclear waste: preliminary analysis of the impacts of halite dissolution and precipitation. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-2015). ARMA.

6

Bossart, P., Trick, T., Meier, P.M., and Mayor, J.C., 2004. Structural and hydrogeological characterisation of the excavation-disturbed zone in the Opalinus Clay (Mont Terri Project, Switzerland), Applied Clay Science, 26(1-4), p.429-448.

10.1016/j.clay.2003.12.018
7

Cao, S., Liu, Y., Xie, J., and Ma, L., 2019. Study on Thermo-Hydro-Mechanical Coupling Behaviors of Buffer Material. In Proceedings of the 8th International Congress on Environmental Geotechnics Volume 2: Towards a Sustainable Geoenvironment 8th (pp.367-375). Springer Singapore.

10.1007/978-981-13-2224-2_45PMC6849213
8

Chang, K.W., Nole, M., and Stein, E.R., 2021. Reduced-order modeling of near-field THMC coupled processes for nuclear waste repositories in shale, Computers and Geotechnics, 138, 104326.

10.1016/j.compgeo.2021.104326
9

Chen, Z.G., Tang, C.S., Shen, Z., Liu, Y.M., and Shi, B., 2017. The geotechnical properties of GMZ buffer/backfill material used in high-level radioactive nuclear waste geological repository: a review, Environmental Earth Sciences, 76, p.1-16.

10.1007/s12665-017-6580-2
10

Choi, S.B., Kim, Y.H., Kim, E.Y., and Cheon, D.S., 2020. Rock mechanical aspects in site characterization for HLW geological disposal: current status and case studies, Tunnel and Underground Space, 30(2), p.136-148.

11

Duan, M., Zhang, J., Jiang, G., Li, H., and Mao, L., 2020. Near-field thermo-mechanical coupling simulation research on the mudstone repository with high-level radioactive waste, Fresenius Environmental Bulletin, 29(1), p.590-599.

12

Elodie, C., Aurélie, T., Alaa, C., Pierre, B., Guillaume, H., and Marc, L., 2020. Sensors position optimization for monitoring the convergence of radioactive waste storage tunnel, Nuclear Engineering and Design, 367, 110778.

10.1016/j.nucengdes.2020.110778
13

Girvan, M. and Newman, M.E., 2002. Community structure in social and biological networks, Proceedings of the National Academy of Sciences, 99(12), p.7821-7826.

10.1073/pnas.12265379912060727PMC122977
14

Gong, B., Yang, K., Lian, J.A., and Wang, J., 2021. Machine learning-enabled prediction of chemical durability of A2B2O7 pyrochlore and fluorite, Computational Materials Science, 200, 110820.

10.1016/j.commatsci.2021.110820
15

Guiltinan, E., Bartol, J., Benbow, S., Bourret, M., Czaikowski, O., Jayne, R., Kuhlman, K., Norris, S., Rutqvist, J., Shao, H., Tounsi, H., Watson, C., and Stauffer, P., 2022. Brine Availability Test in Salt: International Collaborative Modeling in the DECOVALEX Project.

16

Habibi, R., Zare, S., Asgari, A., Singh, M., and Mahmoodpour, S, 2023. Coupled thermo-hydro-mechanical-chemical processes in salt formations for storage applications, Renewable and Sustainable Energy Reviews, 188, 113812.

10.1016/j.rser.2023.113812
17

He, Q., 1999. Knowledge discovery through co-word analysis.

18

Hicks, T.W., White, M.J., and Hooker, P.J., 2009. Role of Bentonite in Determination of Thermal Limits on Geological Disposal Facility Design, Report 0883-1 Ver.2, Galson Sciences Ltd., Oakham, UK.

10.1115/ICEM2009-16241
19

Hou, M.Z., Gou, Y., and Rutqvist, J., 2010. June, Integration of the Codes FLAC3D and TOUGHREACT for THMC Coupled Geo-process in Reservoirs. In 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC 2010 (pp.cp-161). European Association of Geoscientists & Engineers.

20

Hu, M., Steefel, C.I., Rutqvist, J., and Gilbert, B., 2023. Microscale THMC modeling of pressure solution in salt rock: impacts of geometry and temperature, Rock Mechanics and Rock Engineering, 56(10), p.7071-7089.

10.1007/s00603-022-03162-6
21

Hudson, J.A., Stephansson, O., and Andersson, J., 2005. Guidance on numerical modelling of thermo-hydro-mechanical coupled processes for performance assessment of radioactive waste repositories, International Journal of Rock Mechanics and Mining Sciences, 42(5-6), p.850-870.

10.1016/j.ijrmms.2005.03.018
22

Hume, S., West, G., and Dobie, G., 2024. A framework for capturing and representing the process to classify nuclear waste and informing where processes can be automated, Progress in Nuclear Energy, 170, 105133.

10.1016/j.pnucene.2024.105133
23

Hunsche, U. and Hampel, A., 1999. Rock salt-the mechanical properties of the host rock material for a radioactive waste repository, Engineering Geology, 52(3-4), p.271-291.

10.1016/S0013-7952(99)00011-3
24

Jin, C. and Eo, S.H., 2018. Avian research trends in Korea analyzed by text-mining and co-word analysis: Based on articles of the Korean Journal of Ornithology, Korean Journal of Ornithology, 25(2), p.126-132.

10.30980/KJO.2018.12.25.2.126
25

Kim, J., Sonnenthal, E., and Rutqvist, J., 2015. A sequential implicit algorithm of chemo-thermo-poro-mechanics for fractured geothermal reservoirs, Computers & geosciences, 76, p.59-71.

10.1016/j.cageo.2014.11.009
26

Kim, J.G., Jang, S.C., Kang, I.S., Lee, D.J., Lee, J.W., and Park, H.S., 2020a. A study on object recognition using deep learning for optimizing categorization of radioactive waste, Progress in Nuclear Energy, 130, 103528.

10.1016/j.pnucene.2020.103528
27

Kim, K.H., Yun, S.T., Yu, S., Choi, B.Y., Kim, M.J., and Lee, K.J., 2020b. Geochemical pattern recognitions of deep thermal groundwater in South Korea using self-organizing map: Identified pathways of geochemical reaction and mixing, Journal of Hydrology, 589, 125202.

10.1016/j.jhydrol.2020.125202
28

Kim, T., Lee, C., Kim, J.W., Kang, S., Kwon, S., Kim, K.I., ... and Kim, J.S., 2021. Introduction to Tasks in the International Cooperation Project, DECOVALEX-2023 for the Simulation of Coupled Thermo-hydro-mechanical-chemical Behavior in a Deep Geological Disposal of High-level Radioactive Waste, Tunnel and Underground Space, 31(3), p.167-183.

29

Kim, T., Park, C.H., Lee, C., and Kim, J.S., 2023. A numerical study on THM coupled behavior in the high-level radioactive waste disposal system. In IOP Conference Series: Earth and Environmental Science, 1124(1), p.012109, IOP Publishing.

10.1088/1755-1315/1124/1/012109
30

Korea Atomic Energy Research Institute, 2002. Review of THM coupling mechanisms; geological disposal system development, KAERI/AR-627/2002, Taejeon, Korea, 79p.

31

Krob, F., Krohn, J., Ustohalova, V., Wittek, S., and Bratzel, D., 2023. May, Potentials and challenges of applying artificial intelligence (AI) ie> geosciences for the search of a repository of high-level waste in Germany. In EGU General Assembly Conference Abstracts, p.EGU-16757.

10.5194/egusphere-egu23-16757
32

Kuhlman, K.L. and Malama, B., 2013. Brine flow in heated geologic salt (No. SAND2013-1944). Sandia National Lab. (SNL-NM), Albuquerque, NM (United States).

10.2172/1095129
33

Kwon, S. and Lee, C., 2018. THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network, Geomechanics & engineering, 16(4), p.363-373.

34

Kwon, S., Lee, C., Jeon, S., and Choi, H.-J., 2013. Thermo-mechanical coupling analysis of APSE using submodels and neural networks, Journal of Rock Mechanics and Geotechnical Engineering, 5, p.32-43.

10.1016/j.jrmge.2012.06.002
35

Kwon, S.K. and Cho, W.J., 2007. Investigation of excavation disturbed zone around a tunnel by blasting, Explosives and Blasting, 25(1), p.15-29.

36

Lee, C., Lee, J., Kim, M., and Kim, G.Y., 2020. Implementation of Barcelona basic model into TOUGH2-MP/FLAC3D, Tunnel and Underground Space, 30(1), p.39-62.

37

Lee, J., Kim, K.I., Min, K.B., and Rutqvist, J., 2019. TOUGH-UDEC: A simulator for coupled multiphase fluid flows, heat transfers and discontinuous deformations in fractured porous media, Computers & Geosciences, 126, p.120-130.

10.1016/j.cageo.2019.02.004
38

Lee, S., Park, J.Y., Kihm, J.H., and Kim, J.M., 2022. Geomechanical and hydrogeological validation of hydro-mechanical two-way sequential coupling in TOUGH2-FLAC3D linking algorithm with insights into the Mandel, Noordbergum, and Rhade effects, Geomechanics and Engineering, 28(5), p.437-454.

39

Levasseur, S., Sillen, X., Marschall, P., Wendling, J., Olin, M., Grgic, D., and Svoboda, J., 2022. EURADWASTE'22 Paper-Host rocks and THMC processes in DGR. EURAD GAS and HITEC: mechanistic understanding of gas and heat transport in clay-based materials for radioactive waste geological disposal, EPJ N-Nuclear Sciences & Technologies, 8.

10.1051/epjn/2022021
40

Li, B., Jiang, Y., Koyama, T., Jing, L., and Tanabashi, Y., 2008. Experimental study of the hydro-mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures, International Journal of Rock Mechanics and Mining Sciences, 45(3), p.362-375.

10.1016/j.ijrmms.2007.06.004
41

Lin, W.S., Liu, C.W., and Suu-Yan, L., 2017. Modeling of coupled thermo-hydro-mechanical-chemical processes for high-level radioactive waste repositories-17361. In WM2017 Conference, WM Symposia, Inc., Phoenix, AZ, USA, p.8-9.

42

Lisjak, A., Grasselli, G., and Vietor, T., 2014. Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales, International Journal of Rock Mechanics and Mining Sciences, 65, p.96-115.

10.1016/j.ijrmms.2013.10.006
43

Lovász, V., Halász, A., Molnár, P., Karsa, R., and Halmai, Á., 2023. Application of a CNN to the Boda Claystone Formation for high-level radioactive waste disposal, Scientific Reports, 13(1), 5491p.

10.1038/s41598-023-31564-137015959PMC10073294
44

Lu, X., Sargin, I., and Vienna, J.D., 2021. Predicting nepheline precipitation in waste glasses using ternary submixture model and machine learning, Journal of the American Ceramic Society, 104(11), p.5636-5647.

10.1111/jace.17983
45

Mariner, P.E., Berg, T.M., Chang, K.W., Debusschere, B.J., Leone, R.C., and Seidl, D.T., 2020. Surrogate Model Development of Spent Fuel Degradation for Repository Performance Assessment (No. SAND-2020-10797R). Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab.(SNL-CA), Livermore, CA (United States).

46

Martín, L.B., Rutqvist, J., and Birkholzer, J.T., 2015. Long-term modeling of the thermal-hydraulic-mechanical response of a generic salt repository for heat-generating nuclear waste, Engineering geology, 193, p.198-211.

10.1016/j.enggeo.2015.04.014
47

Metcalfe, R., Watson, S.P., Rees, J.H., Humphreys, P., and King, F, 2008. Gas generation and migration from a deep geological repository for radioactive waste. A review of Nirex/NDA's work.

48

Mollaali, M., Buchwald, J., Montoya, V., Kolditz, O., and Yoshioka, K., 2023. Clay-rock fracturing risk assessment under high gas pressures in repository systems. In IOP Conference Series: Earth and Environmental Science, 1124(1), p.012120, IOP Publishing.

10.1088/1755-1315/1124/1/012120
49

Montonen, O., Eronen, V.P., Ranta, T., Huttunen, J.A., and Mäkelä, M.M., 2020. Multiobjective Mixed Integer Nonlinear Model to Plan the Schedule for the Final Disposal of the Spent Nuclear Fuel in Finland, Mathematics, 8(4), 528p.

10.3390/math8040528
50

Ogata, S., Yasuhara, H., Kinoshita, N., and Kishida, K., 2020. Coupled thermal-hydraulic-mechanical-chemical modeling for permeability evolution of rocks through fracture generation and subsequent sealing, Computational Geosciences, 24, p.1845-1864.

10.1007/s10596-020-09948-3
51

Ogata, S., Yasuhara, H., Kinoshita, N., Inui, T., Nishira, E., and Kishida, K., 2022. Numerical analyses of coupled thermal-hydraulic-mechanical-chemical processes for estimating permeability change in fractured rock induced by alkaline solution, Geomechanics for Energy and the Environment, 31, 100372.

10.1016/j.gete.2022.100372
52

Park, S., 2022. Development of Fully Coupled Thermo-Hydro-Chemical (THC) Model for Predicting Copper Canister Corrosion Behavior. MS Thesis, Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering, 78p.

53

Pitz, M., Grunwald, N., Graupner, B., Kurgyis, K., Radeisen, E., Maßmann, J., ... and Nagel, T., 2023. Benchmarking a new TH2M implementation in OGS-6 with regard to processes relevant for nuclear waste disposal, Environmental Earth Sciences, 82(13), 319p.

10.1007/s12665-023-10971-7
54

Quintessa LTD, 2012. Decovalex-2011: Quintessa and University of Edinburgh Contribution to Task A: A technical report to NDA RWMDA, QRS-1378J-R9, England, 172p.

55

Ribet, S., Maia, F., Bailly, C., Madé, B., Grambow, B., and Montavon, G., 2023. Temperature effect of U (VI) retention on the Callovo-Oxfordian clay rock, Applied Clay Science, 238, 106925.

10.1016/j.clay.2023.106925
56

Rimsza, J.M. and Kuhlman, K.L., 2021. Temperature and pressure dependence of salt-brine dihedral angles in the subsurface, Langmuir, 37(45), p.13291-13299.

10.1021/acs.langmuir.1c0183634731565
57

Rutqvist, J., Wu, Y.S., Tsang, C.F., and Bodvarsson, G., 2002. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechanics and Mining Sciences, 39(4), p.429-442.

10.1016/S1365-1609(02)00022-9
58

Rutqvist, J., Zheng, L., Chen, F., Liu, H.H., and Birkholzer, J., 2014. Modeling of coupled thermo-hydro-mechanical processes with links to geochemistry associated with bentonite-backfilled repository tunnels in clay formations, Rock Mechanics and Rock Engineering, 47, p.167-186.

10.1007/s00603-013-0375-x
59

Samper, J., Mon, A., and Montenegro, L., 2020. A coupled THMC model of the geochemical interactions of concrete and bentonite after 13 years of FEBEX plug operation, Applied Geochemistry, 121, 104687.

10.1016/j.apgeochem.2020.104687
60

Sánchez, M., Gens, A., Villar, M.V., and Olivella, S., 2016. Fully coupled thermo-hydro-mechanical double-porosity formulation for unsaturated soils, International Journal of Geomechanics, 16(6), D4016015.

10.1061/(ASCE)GM.1943-5622.0000728
61

Sasaki, T. and Rutqvist, J., 2021. Estimation of stress and stress-induced permeability change in a geological nuclear waste repository in a thermo-hydrologically coupled simulation, Computers and Geotechnics, 129, 103866.

10.1016/j.compgeo.2020.103866
62

Sirdesai, N.N., Singh, A., Sharma, L.K., Singh, R., and Singh, T.N., 2019. Development of novel methods to predict the strength properties of thermally treated sandstone using statistical and soft-computing approach, Neural Computing and Applications, 31, p.2841-2867.

10.1007/s00521-017-3233-z
63

Solans, V., Rochman, D., Brazell, C., Vasiliev, A., Ferroukhi, H., and Pautz, A., 2021. Optimisation of used nuclear fuel canister loading using a neural network and genetic algorithm, Neural Computing and Applications, 33(23), p.16627-16639.

10.1007/s00521-021-06258-2
64

Stanfill, B.A., Piepel, G.F., Vienna, J.D., et al., 2020. Nonlinear logistic regression mixture experiment modeling for binary data using dimensionally reduced components, Quality and Reliability Engineering International, 36(1), p.33-49.

10.1002/qre.2558
65

Suh, J.W., Sohn, S.Y., and Lee, B.K., 2020. Patent clustering and network analyses to explore nuclear waste management technologies, Energy Policy, 146, 111794.

10.1016/j.enpol.2020.111794
66

Suh, Y.A., Hornibrook, C., and Yim, M.S., 2018. Decisions on nuclear decommissioning strategies: Historical review, Progress in Nuclear Energy, 106, p.34-43.

10.1016/j.pnucene.2018.02.001
67

Sun, Z., Wang, L., Zhou, J.Q., and Wang, C., 2020. A new method for determining the hydraulic aperture of rough rock fractures using the support vector regression, Engineering Geology, 271, 105618.

10.1016/j.enggeo.2020.105618
68

Sweet, J.N. and McCreight, J.E., 1983. Thermal conductivity of rock salt and other geologic materials from the site of the proposed waste isolation pilot plant, In Thermal Conductivity, 16, p.61-78.

10.1007/978-1-4684-4265-6_7
69

Swinney, M.W., Bhatt, S., Davidson, G.G., Nole, M., and Banerjee, K., 2022. Multiphysics modeling of a critical dual-purpose canister in a saturated geological repository, Annals of Nuclear Energy, 175, 109204.

10.1016/j.anucene.2022.109204
70

Taron, J., Elsworth, D., and Min, K.B., 2009. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media, International Journal of Rock Mechanics and Mining Sciences, 46(5), p.842-854.

10.1016/j.ijrmms.2009.01.008
71

Tosoni, E., Salo, A., Govaerts, J., and Zio, E., 2019. Comprehensiveness of scenarios in the safety assessment of nuclear waste repositories, Reliability Engineering & System Safety, 188, p.561-573.

10.1016/j.ress.2019.04.012
72

Tounsi, H., Lerche, S., Wolters, R., Hu, M., and Rutqvist, J., 2023. Impact of the compaction behavior of crushed salt on the thermo-hydro-mechanical response of a generic salt repository for heat-generating nuclear waste, Engineering Geology, 323, 107217.

10.1016/j.enggeo.2023.107217
73

Trivelpiece, C.L., Edwards, T.B., Johnson, F.C., Crapse, K.P., and Fox, K.M., 2020. Method for estimating the density of high‐level nuclear waste glass, International Journal of Applied Glass Science, 11(4), p.641-648.

10.1111/ijag.15476
74

Tsai, P.C., Huang, X., Hung, Y.H., Huang, C.H., and Smith, S., 2019. The computer aided cutting planning of components using genetic algorithms for decommissioning of a nuclear reactor, Annals of Nuclear Energy, 130, p.200-207.

10.1016/j.anucene.2019.02.041
75

Van Eck, N.J. and Waltman, L., 2013. VOSviewer manual, Leiden: Univeristeit Leiden, 1(1), p.1-53.

76

Viswanathan, H.S., Ajo‐Franklin, J., Birkholzer, J.T., Carey, J.W., Guglielmi, Y., Hyman, J.D., ... and Tartakovsky, D.M., 2022. From fluid flow to coupled processes in fractured rock: Recent advances and new frontiers, Reviews of Geophysics, 60(1), e2021RG000744.

10.1029/2021RG000744
77

Wallin, J.A., 2005. Bibliometric methods: pitfalls and possibilities, Basic & Clinical Pharmacology & Toxicology, 97(5), p.261-275.

10.1111/j.1742-7843.2005.pto_139.x16236137
78

Wang, J., Chen, L., Su, R., and Zhao, X., 2018. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests, Journal of Rock Mechanics and Geotechnical Engineering, 10(3), p.411-435.

10.1016/j.jrmge.2018.03.002
79

Wei, X., 2022. Coupled Modelling of Gas Migration in Host Rock and Application to a Potential Deep Geological Repository for Nuclear Wastes in Ontario, Doctoral dissertation, Université d'Ottawa/University of Ottawa.

80

Xu, H., Zheng, L., Rutqvist, J., and Birkholzer, J.T., 2017. June, Modeling of a Clay-Rock Repository for Nuclear Waste With a Coupled Chemo-Mechanical Approach. In ARMA US Rock Mechanics/Geomechanics Symposium, p.ARMA-2017, ARMA.

81

Xu, W., Zhang, Y., Li, X., Wang, X., Ma, F., Zhao, J., and Zhang, Y., 2020. Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: A case study of the Xinchang underground research laboratory site, China, Engineering Geology, 269, 105553.

10.1016/j.enggeo.2020.105553
82

Xuan, C., Zhang, Y., Xu, W., Li, X., and Zhang, N., 2024. Beishan exploration tunnel surrounding rock discontinuity identification based on structure from motion photogrammetry technology, Engineering Reports, e12882.

10.1002/eng2.12882
83

Yoon, S., Jeon, J.S., Kim, G.Y., Seong, J.H., and Baik, M.H., 2019. Specific heat capacity model for compacted bentonite buffer materials, Annals of Nuclear Energy, 125, p.18-25.

10.1016/j.anucene.2018.10.045
84

Yu, H., Chen, W., Ma, Y., Gong, Z., Tian, H., and Yuan, J., 2022. Thermo-hydro-mechanical behavior of a clayey rock: A constitutive approach and numerical validation, Case Studies in Thermal Engineering, 39, 102424.

10.1016/j.csite.2022.102424
85

Zhang, C.L., 2011. Experimental evidence for self-sealing of fractures in claystone, Physics and Chemistry of the Earth, Parts A/B/C, 36(17-18), p.1972-1980.

10.1016/j.pce.2011.07.030
86

Zhang, Y., Newell, P., Xi, Y., Tyrrell, A., Sisodiya, M., Zhou, X., ... and Vazic, B., 2022. Time-dependent THMC properties and microstructural evolution of damaged rocks in excavation damage zone (No. NEUP-CUB-18-15701). Univ. of Colorado, Boulder, CO (United States).

10.2172/1897054
87

Zheng, L. and Fernández, A.M., 2023. Prediction of long-term geochemical change in bentonite based on the interpretative THMC model of the FEBEX in situ test, Minerals, 13(12), 1522p.

10.3390/min13121522
88

Zheng, L., Kim, K., Xu, H., and Rutqvist, J., 2016. DR Argillite Disposal R&D at LBNL (No. LBNL-1006013). Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States).

10.2172/1332326
89

Zheng, L., Rutqvist, J., Birkholzer, J.T., and Liu, H.H., 2015. On the impact of temperatures up to 200 C in clay repositories with bentonite engineer barrier systems: A study with coupled thermal, hydrological, chemical, and mechanical modeling, Engineering Geology, 197, p.278-295.

10.1016/j.enggeo.2015.08.026
90

Zheng, L., Rutqvist, J., Xu, H., and Birkholzer, J.T., 2017. Coupled THMC models for bentonite in an argillite repository for nuclear waste: Illitization and its effect on swelling stress under high temperature, Engineering Geology, 230, p.118-129.

10.1016/j.enggeo.2017.10.002
91

Zheng, L., Xu, H., Rutqvist, J., Reagan, M., Birkholzer, J., Villar, M.V., and Fernández, A.M., 2020. The hydration of bentonite buffer material revealed by modeling analysis of a long-term in situ test, Applied Clay Science, 185, 105360.

10.1016/j.clay.2019.105360
92

Zheng, L., Xu, H., Rutqvuist, J., and Birkholzer, J.T., 2021. June, Coupled THMC models for bentonite barrier in nuclear waste repositories: modeling approach, validation by field test and exploratory models. In ARMA US Rock Mechanics/ Geomechanics Symposium, p.ARMA-2021, ARMA.

93

Zill, F., Wang, W., and Nagel, T., 2022. Influence of THM process coupling and constitutive models on the simulated evolution of deep salt formations during glaciation. In The Mechanical Behavior of Salt X, p.353-362, CRC Press.

10.1201/9781003295808-33
94

Zou, L. and Cvetkovic, V., 2023. Disposal of high-level radioactive waste in crystalline rock: On coupled processes and site development, Rock Mechanics Bulletin, 2(3), 100061.

10.1016/j.rockmb.2023.100061
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 61
  • No :5
  • Pages :419-438
  • Received Date : 2024-09-25
  • Revised Date : 2024-10-22
  • Accepted Date : 2024-10-23