All Issue

2024 Vol.61, Issue 1

Research Paper

28 February 2024. pp. 1-14
Abstract
References
1
Ahn, Y. and Choe, J., 2022. Reliable channel reservoir characterization and uncertainty quantification using variational autoencoder and ensemble smoother with multiple data assimilation, Journal of Petroleum Science and Engineering, 209, 109816. 10.1016/j.petrol.2021.109816
2
Bennion, D.B. and Bachu, S., 2005. Relative permeability characteristics for supercritical CO2 displacing water in a variety of potential sequestration zones in the western Canada sedimentary basin, In SPE Annual Technical Conference and Exhibition, SPE-95547. 10.2523/95547-MS
3
Bennion, D.B. and Bachu, S., 2007. Permeability and relative permeability measurements at reservoir conditions for CO2-water systems in ultralow-permeability confining caprocks, In SPE Europec featured at EAGE Conference and Exhibition, SPE-106995. 10.2523/106995-MSPMC2258660
4
Cheong, S., Kim, B., Park, Y., Park, Y., Kim, D., and Kim, H., 2022. Test processing of seismic monitoring using Sleipner 4D data, Journal of the Korean Society of Mineral and Energy Resources Engineers, 59(1), p.31-41. 10.32390/ksmer.2022.59.1.031
5
Computer Modelling Group, 2020. GEM user's guide version 2020, CMG, Canada.
6
Deutsch, C.V. and Journel, A.G., 1992. Geostatistical software library and user's guide, New York, 119(147), p.578.
7
Furre, A.K., Eiken, O., Alnes, H., Vevatne, J.N., and Kiær, A.F., 2017. 20 years of monitoring CO2-injection at Sleipner, Energy procedia, 114, p.3916-3926. 10.1016/j.egypro.2017.03.1523
8
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y., 2014. Generative adversarial nets, In Neural Information Processing Systems, p.2672-2680.
9
He, K., Zhang, X., Ren, S., and Sun, J., 2016. Deep residual learning for image recognition, In Proceedings of the IEEE conference on computer vision and pattern recognition, p.770-778. 10.1109/CVPR.2016.9026180094
10
Hovorka, S.D., Doughty, C.K., Sakurai, S., and Holtz, M., 2005. Frio brine pilot: field validation of numerical simulation of CO2 storage, In Abstract, AAPG Annual Convention, Calgary, Alberta, Canada, p.1-23.
11
International Energy Agency (IEA), 2023. Net zero roadmap a global pathway to keep the 1.5°C goal in reach, IEA, Paris, France, 226p.
12
Isola, P., Zhu, J.Y., Zhou, T., and Efros, A.A., 2017. Image-to-image translation with conditional adversarial networks, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p.1125-1134. 10.1109/CVPR.2017.632
13
Jo, H., Cho, Y., Pyrcz, M., Tang, H., and Fu, P., 2022. Machine-learning-based porosity estimation from multifrequency poststack seismic data, Geophysics, 87(5), p.217-233. 10.1190/geo2021-0754.1
14
Jo, H., Jung, H., Ahn, J., Lee, K., and Choe, J., 2017. History matching of channel reservoirs using ensemble Kalman filter with continuous update of channel information, Energy Exploration & Exploitation, 35(1), p.3-23. 10.1177/0144598716680141
15
Jo, H., Pan, W., Santos, J.E., Jung, H., and Pyrcz, M.J., 2021. Machine learning assisted history matching for a deepwater lobe system, Journal of Petroleum Science and Engineering, 207, 109086. 10.1016/j.petrol.2021.109086
16
Kim, J.W. and Nam, M.J., 2012. A review on monitoring the behavior and saturation of CO2 at a CO2 injection field, Nagaoka, Japan, Journal of the Korean Society for Geosystem Engineering, 49(5), p.677-688.
17
Kim, S., Lee, K., Lim, J., Jeong, H., and Min, B., 2020. Development of ensemble smoother-neural network and its application to history matching of channelized reservoirs, Journal of Petroleum Science and Engineering, 191, 107159. 10.1016/j.petrol.2020.107159
18
LeCun, Y. and Bengio, Y., 1995. Convolutional networks for images, speech, and time series, The handbook of brain theory and neural networks, 3361(10), p.255-258.
19
Lee, K.B., Jung, S.P., and Choe, J.G., 2015. Uncertainty quantification of channelized reservoirs using ensemble smoother with a distance-based method, Journal of the Korean Society of Mineral and Energy Resources Engineers, 52(2), p.139-147. 10.12972/ksmer.2015.52.2.139
20
Lee, K., Kim, S., Choe, J., Min, B., and Lee, H.S., 2019. Iterative static modeling of channelized reservoirs using history-matched facies probability data and rejection of training image, Petroleum Science, 16, p.127-147. 10.1007/s12182-018-0254-x
21
Market Report Worlds, 2022. Global carbon capture and storage (CCS) market insights, forecast to 2028, Pune, India, 115p.
22
Pan, W., Chen, J., Mohamed, S., Jo, H., Santos, J.E., and Pyrcz, M.J., 2023. Efficient subsurface modeling with sequential patch generative adversarial neural networks, In SPE Annual Technical Conference and Exhibition, SPE-214985-MS 10.2118/214985-MS
23
Pan, W., Jo, H., Santos, J.E., Torres-Verdín, C., and Pyrcz, M.J., 2022. Hierarchical machine learning workflow for conditional and multiscale deep-water reservoir modeling, AAPG Bulletin, 106(11), p. 2163-2186. 10.1306/05162221022
24
Park, H. and Jin, J., 2023. Carbon neutrality/green growth national strategy and the first national basic plan and carbon neutrality in the urban sector (in Korean), Urban planners, 10(3), p.5-8.
25
Pyrcz, M.J., Jo, H., Kupenko, A., Liu, W., Gigliotti, A.E., Salomaki, T., and Santos, J., 2021. GeostatsPy python package. Python Package Index, https://pypi.org/project/geostatspy
26
Radford, A., Metz, L., and Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv preprint arXiv:1511.06434.
27
Ronneberger, O., Fischer, P., and Brox, T., 2015. Convolutional networks for biomedical image segmentation, In International Conference on Medical Image Computing and Computer-assisted Intervention, p.234-241. 10.1007/978-3-319-24574-4_28
28
Sato, K., Mito, S., Horie, T., Ohkuma, H., Saito, H., Watanabe, J., and Yoshimura, T., 2011. Monitoring and simulation studies for assessing macro-and meso-scale migration of CO2 sequestered in an onshore aquifer: experiences from the Nagaoka pilot site, Japan, International Journal of Greenhouse Gas Control, 5(1), p.125-137. 10.1016/j.ijggc.2010.03.003
29
Sharma, S., Cook, P., Berly, T., and Anderson, C., 2007. Australia's first geosequestration demonstration project-the CO2CRC Otway basin pilot project, The APPEA Journal, 47(1), p.259-270. 10.1071/AJ06017
31
Tang, H., Fu, P., Jo, H., Jiang, S., Sherman, C.S., Hamon, F., Azzolina, N.A., and Morris, J.P., 2022. Deep learning-accelerated 3D carbon storage reservoir pressure forecasting based on data assimilation using surface displacement from InSAR, International Journal of Greenhouse Gas Control, 120, 103765. 10.1016/j.ijggc.2022.103765
32
Tang, H., Fu, P., Sherman, C.S., Zhang, J., Ju, X., Hamon, F., Azzolina, N.A., Kurton-Kelly, M., and Morris, J.P., 2021. A deep learning-accelerated data assimilation and forecasting workflow for commercial-scale geologic carbon storage, International Journal of Greenhouse Gas Control, 112, 103488. 10.1016/j.ijggc.2021.103488
33
Wang, Z., Bai, B., Long, Y., and Wang, L., 2019. An investigation of CO2-responsive preformed particle gel for conformance control of CO2 flooding in reservoirs with fractures or fracture-like channels, SPE Journal, 24(05), p.2398-2408. 10.2118/197046-PA
34
Xue, Z., Tanase, D., and Watanabe, J., 2006. Estimation of CO2 saturation from time-lapse CO2 well logging in an onshore aquifer, Nagaoka, Japan, Exploration Geophysics, 37(1), p.19-29. 10.1071/EG06019
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 61
  • No :1
  • Pages :1-14
  • Received Date : 2023-12-01
  • Revised Date : 2024-01-17
  • Accepted Date : 2024-02-27