Research Paper
Abstract
References
Information
Pyrcz, M.J., Jo, H., Kupenko, A., Liu, W., Gigliotti, A.E., Salomaki, T., and Santos, J., 2021. GeostatsPy python package. Python Package Index, https://pypi.org/project/geostatspy
Sato, K., Mito, S., Horie, T., Ohkuma, H., Saito, H., Watanabe, J., and Yoshimura, T., 2011. Monitoring and simulation studies for assessing macro-and meso-scale migration of CO2 sequestered in an onshore aquifer: experiences from the Nagaoka pilot site, Japan, International Journal of Greenhouse Gas Control, 5(1), p.125-137.
10.1016/j.ijggc.2010.03.003
Tang, H., Fu, P., Jo, H., Jiang, S., Sherman, C.S., Hamon, F., Azzolina, N.A., and Morris, J.P., 2022. Deep learning-accelerated 3D carbon storage reservoir pressure forecasting based on data assimilation using surface displacement from InSAR, International Journal of Greenhouse Gas Control, 120, 103765.
10.1016/j.ijggc.2022.103765
Tang, H., Fu, P., Sherman, C.S., Zhang, J., Ju, X., Hamon, F., Azzolina, N.A., Kurton-Kelly, M., and Morris, J.P., 2021. A deep learning-accelerated data assimilation and forecasting workflow for commercial-scale geologic carbon storage, International Journal of Greenhouse Gas Control, 112, 103488.
10.1016/j.ijggc.2021.103488
- Publisher :The Korean Society of Mineral and Energy Resources Engineers
- Publisher(Ko) :한국자원공학회
- Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
- Journal Title(Ko) :한국자원공학회지
- Volume : 61
- No :1
- Pages :1-14
- Received Date : 2023-12-01
- Revised Date : 2024-01-17
- Accepted Date : 2024-02-27
- DOI :https://doi.org/10.32390/ksmer.2024.61.1.001