All Issue

2022 Vol.59, Issue 2 Preview Page

Technical Report

30 April 2022. pp. 205-217
Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., and Yang, Y., 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophysical Journal International, 169(3), p.1239-1260. 10.1111/j.1365-246X.2007.03374.x
Bharadwaj, P., Schuster, G., Mallinson, I., and Dai, W., 2012. Theory of supervirtual refraction interferometry, Geophysical Journal International, 188(1), p.263-273. 10.1111/j.1365-246X.2011.05253.x
Boullenger, B., Verdel, A., Paap, B., Thorbecke, J., and Draganov, D., 2015. Studying CO2 storage with ambient- noise seismic interferometry: A combined numerical feasibility study and field-data example for Ketzin, Germany, Geophysics, 80(1), p.Q1-Q13. 10.1190/geo2014-0181.1
Breton, M., Bontemps, N., Guillemot, A., Baillet, L., and Larose, É., 2021. Landslide monitoring using seismic ambient noise correlation: challenges and applications, Earth-Science Reviews, 103518p. 10.1016/j.earscirev.2021.103518
Bulajić, B.Đ., Todorovska, M.I., Manić, M.I., and Trifunac, M.D., 2020. Structural health monitoring study of the ZOIL building using earthquake records, Soil Dynamics and Earthquake Engineering, 133, 106105p. 10.1016/j.soildyn.2020.106105
Campillo, M. and Paul, A., 2003. Long-range correlations in the diffuse seismic coda, Science, 299(5606), p.547-549. 10.1126/science.107855112543969
Casas, J.A., Badi, G.A., Franco, L., and Draganov, D., 2020. Seismic interferometry applied to regional and teleseismic events recorded at Planchón-Peteroa Volcanic Complex, Argentina-Chile, Journal of Volcanology and Geothermal Research, 393, 106805p. 10.1016/j.jvolgeores.2020.106805
Cheraghi, S., White, D.J., Draganov, D., Bellefleur, G., Craven, J.A., and Roberts, B., 2017. Passive seismic reflection interferometry: A case study from the Aquistore CO2 storage site, Saskatchewan, Canada, Geophysics, 82(3), p.B79-B93. 10.1190/geo2016-0370.1
Claerbout, J.F., 1968. Synthesis of a layered medium from its acoustic transmission response, Geophysics, 33(2), p.264-269. 10.1190/1.1439927
Curtis, A., Gerstoft, P., Sato, H., Snieder, R., and Wapenaar, K., 2006. Seismic interferometry-Turning noise into signal, The Leading Edge, 25(9), p.1082-1092. 10.1190/1.2349814
Czarny, R., Pilecki, Z., and Drzewińska, D., 2018. The application of seismic interferometry for estimating a 1D S-wave velocity model with the use of mining induced seismicity, Journal of Sustainable Mining, 17(4), p.209-214. 10.1016/j.jsm.2018.09.001
Dalen, K.N., Wapenaar, K., and Halliday, D.F., 2014. Surface wave retrieval in layered media using seismic interferometry by multidimensional deconvolution, Geophysical Journal International, 196(1), p.230-242. 10.1093/gji/ggt389
Dong, S., Sheng, J., and Schuster, G.T., 2006. Theory and Practice of Refraction Interferometry. SEG Technical Program Expanded Abstracts, p.3021-3025. 10.1190/1.2370154
Draganov, D., Wapenaar, K., Mulder, W., Singer, J., and Verdel, A., 2007. Retrieval of reflections from seismic background‐noise measurements, Geophysical Research Letters, 34(4), L04305p. 10.1029/2006GL028735
Ebrahimian, M., Rahmani, M., and Todorovska, M.I., 2014. Nonparametric estimation of wave dispersion in high‐rise buildings by seismic interferometry, Earthquake Engineering & Structural Dynamics, 43(15), p.2361-2375. 10.1002/eqe.2453
Fang, H., Yao, H., Zhang, H., Huang Y.C., and Van der Hilst, R.D., 2015. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and, Geophysical Journal International, 201, p.1251-1263. 10.1093/gji/ggv080
Fink, M., 1997. Time reversed acoustics, Physics today, 50(3), p.34-40. 10.1063/1.881692
Forghani, F. and Snieder, R., 2010. Underestimation of body waves and feasibility of surface-wave reconstruction by seismic interferometry, The Leading Edge, 29(7), p.790-794. 10.1190/1.3462779
García-Macías, E. and Ubertini, F., 2019. Seismic interferometry for earthquake-induced damage identification in historic masonry towers, Mechanical Systems and Signal Processing, 132, p.380-404. 10.1016/j.ymssp.2019.06.037
Gerstoft, P., Sabra, K.G., Roux, P., Kuperman, W.A., and Fehler, M.C., 2006. Green's functions extraction and surface-wave tomography from microseisms in southern California, Geophysics, 71(4), p.SI23-SI31. 10.1190/1.2210607
Guillemot, A., Helmstetter, A., Larose, É., Baillet, L., Garambois, S., Mayoraz, R., and Delaloye, R., 2020. Seismic monitoring in the Gugla rock glacier (Switzerland): ambient noise correlation, microseismicity and modelling, Geophysical Journal International, 221(3), p.1719-1735. 10.1093/gji/ggaa097
Harba, P., Pilecki, Z., and Krawiec, K., 2019. Comparison of MASW and seismic interferometry with use of ambient noise for estimation of S-wave velocity field in landslide subsurface, Acta Geophysica, 67(6), p.1875-1883. 10.1007/s11600-019-00344-9
Kang, T., 2011. Extraction of a Signal by Using Cross-correlation of Ambient Seismic Noise, Physics and High Technology, 20(8), p.18-21. 10.3938/PhiT.20.032
Kim, K., Park, I., and Byun, J., 2018. Characteristics of Virtual Reflection Images in Seismic Interferometry Using Synthetic Seismic Data, Geophysics and Geophysical Exploration, 21(2), p.94-102.
Kim, S., Tkalčić, H., Rhie, J., and Chen. Y., 2016. Intraplate volcanism controlled by back-arc and continental structures in NE Asia inferred from trans-dimensional Bayesian ambient noise tomography, Geophysical Research Letters, 43, p.8390-8398. 10.1002/2016GL069483
Kim, Y., Jang, S., and Doan, H., 2011. Prestack Depth Migration Using Seismic Virtual Source Gathers, Journal of the Korean Society for Geosystem Engineering, 48(3), p.309-322.
Ko, J. and Jang, S., 2017. Study On Virtual Shot Gather Using Seismic Interferometry, Journal of Advanced Engineering and Technology, 10(1), p.53-58. 10.35272/jaet.2017.10.1.53
Kohler, M.D., Heaton, T.H., and Bradford, S.C., 2007. Propagating waves in the steel, moment-frame factor building recorded during earthquakes, Bulletin of the Seismological Society of America, 97(4), p.1334-1345. 10.1785/0120060148
Lacanna, G., Ripepe, M., Coli, M., Genco, R., and Marchetti, E., 2019. Full structural dynamic response from Giotto's bell tower ambient vibration in Firenze (Italy), using modal analysis and seismic interferometry, NDT & E International, 102, p.9-15. 10.1016/j.ndteint.2018.11.002
Larose, E., Margerin, L., Derode, A., van Tiggelen, B., Campillo, M., Shapiro, N., and Tanter, M., 2006. Correlation of random wavefields: An interdisciplinary review, Geophysics, 71(4), p.SI11-SI21. 10.1190/1.2213356
Lawrence, J.F. and Prieto, G., 2011, Attenuation tomography of the western United States from ambient seismic noise, Journal of Geophysical Research, 116, B06302p. 10.1029/2010JB007836
Lobkis, O.I. and Weaver, R.L., 2001. On the emergence of the Green's function in the correlations of a diffuse field, The Journal of the Acoustical Society of America, 110(6), p.3011-3017. 10.1121/1.1417528
Lopez-Caballero, F. and Mercerat, E. D., 2018. Damage Evaluation of RC Building With Soil-Structure Interaction By Seismic Interferometry: A Numerical Case Study, In 16th European Earthquake Engineering Conference, Thessaloniki, Greece.
Louie, J.N., 2001. Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays, Bulletin of the Seismological Society of America, 91(2), p.347-364. 10.1785/0120000098
Lu, K. and Chávez-Pérez, S., 2020. 3D supervirtual refraction interferometry, Geophysics, 85(3), p.Q1-Q10. 10.1190/geo2019-0097.1
Luo, Y., Yang, Y., Xu, Y., Xu, H., Zhao, K., and Wang, K., 2015. On the limitations of interstation distances in ambient noise tomography, Geophysical Journal International, 201, p.652-661. 10.1093/gji/ggv043
Matzel, E., Zeng, X., Thurber, C., Luo, Y., and Morency, C., 2017. Seismic interferometry using the dense array at the Brady geothermal field, In Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, p.13-15.
Miyazawa, M., Snieder, R., and Venkataraman, A., 2008. Application of seismic interferometry to extract P-and S-wave propagation and observation of shear-wave splitting from noise data at Cold Lake, Alberta, Canada, Geophysics, 73(4), p.D35-D40. 10.1190/1.2937172
Mordret, A., Sun, H., Prieto, G. A., Toksöz, M.N., and Büyüköztürk, O., 2017. Continuous monitoring of high‐rise buildings using seismic interferometry, Bulletin of the Seismological Society of America, 107(6), p.2759-2773. 10.1785/0120160282
Nakata, N. and Snieder, R., 2014. Monitoring a building using deconvolution interferometry. II: Ambient‐vibration analysis, Bulletin of the Seismological Society of America, 104(1), p.204-213. 10.1785/0120130050
Nakata, N., Snieder, R., Kuroda, S., Ito, S., Aizawa, T., and Kunimi, T., 2013. Monitoring a building using deconvolution interferometry. I: Earthquake‐data analysis, Bulletin of the Seismological Society of America, 103(3), p.1662-1678. 10.1785/0120120291
Nakata, N., Snieder, R., Tsuji, T., Larner, K., and Matsuoka, T., 2011. Shear wave imaging from traffic noise using seismic interferometry by cross-coherence, Geophysics, 76(6), p.SA97-SA106. 10.1190/geo2010-0188.1
Nilot, E., Li, Y.E., and Lythgoe, K., 2020. Bedrock detection based on seismic interferometry using ambient noise in Singapore, In SEG Technical Program Expanded Abstracts 2020, Society of Exploration Geophysicists, Huston, United States, p.3577-3581. 10.1190/segam2020-3427558.1
Nishitsuji, Y., Minato, S., Boullenger, B., Gomez, M., Wapenaar, K., and Draganov, D., 2016. Crustal-scale reflection imaging and interpretation by passive seismic interferometry using local earthquakes, Interpretation, 4(3), p.SJ29-SJ53. 10.1190/INT-2015-0226.1
O'Connell, D.R. and Turner, J.P., 2011. Interferometric multichannel analysis of surface waves (IMASW), Bulletin of the Seismological Society of America, 101(5), p.2122-2141. 10.1785/0120100230
Park, C.B., Miller, R.D., and Xia, J., 1999. Multichannel analysis of surface waves, Geophysics, 64(3), p.800-808. 10.1190/1.1444590
Plaen, R.S., Cannata, A., Cannavo, F., Caudron, C., Lecocq, T., and Francis, O., 2019. Temporal changes of seismic velocity caused by volcanic activity at Mt. Etna revealed by the autocorrelation of ambient seismic noise, Frontiers in Earth Science, 6, 251p. 10.3389/feart.2018.00251
Prieto, G.A., Lawrence, J.F., and Beroza, G.C., 2009. Anelastic Earth structure from the coherency of the ambient seismic field, Journal of Geophysical Research: Solid Earth, 114(B7), B07303p. 10.1029/2008JB006067
Prieto, G.A., Lawrence, J.F., Chung, A.I., and Kohler, M.D., 2010. Impulse response of civil structures from ambient noise analysis, Bulletin of the Seismological Society of America, 100(5A), p.2322-2328. 10.1785/0120090285
Rahmani, M., Ebrahimian, M., and Todorovska, M.I., 2015. Time‐wave velocity analysis for early earthquake damage detection in buildings: Application to a damaged full‐scale RC building, Earthquake Engineering & Structural Dynamics, 44(4), p.619-636. 10.1002/eqe.2539
Ritzwoller, M.H., Lin, F.C., and Shen, W., 2011. Ambient noise tomography with a large seismic array, Comptes Rendus Geoscience, 343, p.558-570. 10.1016/j.crte.2011.03.007
Schuster, G., 2009. Seismic interferometry, Cambridge university press, England, 279p.
Schuster, G.T., 2001. Theory of daylight/interferometric imaging-tutorial, In 63rd EAGE conference & exhibition. European Association of Geoscientists & Engineers, Amsterdam, Netherlands, cp-15. 10.3997/2214-4609-pdb.15.A-32
Shapiro, N.M. and Campillo, M., 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophysical Research Letters, 31(7), L07614p. 10.1029/2004GL019491
Shapiro, N.M., Campillo, M., Stehly, L., and Ritzwoller, M.H., 2005. High-resolution surface-wave tomography from ambient seismic noise, Science, 307(5715), p.1615-1618. 10.1126/science.110833915761151
Snieder, R. and Safak, E., 2006. Extracting the building response using seismic interferometry: Theory and application to the Millikan Library in Pasadena, California, Bulletin of the Seismological Society of America, 96(2), p.586-598. 10.1785/0120050109
Snieder, R., 2006. The theory of coda wave interferometry, Pure and Applied geophysics, 163(2), p.455-473. 10.1007/s00024-005-0026-6
Snieder, R., Miyazawa, M., Slob, E., Vasconcelos, I., and Wapenaar, K., 2009. A comparison of strategies for seismic interferometry, Surveys in Geophysics, 30(4-5), p.503-523. 10.1007/s10712-009-9069-z
Sun, H., Mordret, A., Prieto, G.A., Toksöz, M.N., and Büyüköztürk, O., 2017. Bayesian characterization of buildings using seismic interferometry on ambient vibrations, Mechanical Systems and Signal Processing, 85, p.468-486. 10.1016/j.ymssp.2016.08.038
Todorovska, M.I. and Trifunac, M.D., 2008. Earthquake damage detection in the Imperial County Services Building III: analysis of wave travel times via impulse response functions, Soil Dynamics and Earthquake Engineering, 28(5), p.387-404. 10.1016/j.soildyn.2007.07.001
Vasconcelos, I. and Snieder, R., 2008. Interferometry by deconvolution: Part 1-Theory for acoustic waves and numerical examples, Geophysics, 73(3), p.S115-S128. 10.1190/1.2904554
Verdel, A., Boullenger, B., Martins, J.E., Obermann, A., Toledo, T., and Jousset, P., 2019. Ambient noise seismic reflection interferometry at the Los Humeros geothermal field, Mexico, In European Geothermal Congress 2019, The Hague, The Netherlands.
Voisin, C., Garambois, S., Massey, C., and Brossier, R., 2016. Seismic noise monitoring of the water table in a deep-seated, slow-moving landslide, Interpretation, 4(3), p.SJ67-SJ76. 10.1190/INT-2016-0010.1
Wapenaar, K., Draganov, D., Snieder, R., Campman, X., and Verdel, A., 2010. Tutorial on seismic interferometry: Part 1-Basic principles and applications, Geophysics, 75(5), p.195-209. 10.1190/1.3457445
Wapenaar, K., Draganov, D., Van Der Neut, J., and Thorbecke, J., 2004. Seismic interferometry: a comparison of approaches, SEG Technical Program Expanded Abstracts, p.1981-1984. 10.1190/1.1851182
Wapenaar, K., Van Der Neut, J., Ruigrok, E., Draganov, D., Hunziker, J., Slob, E., and Snieder, R., 2011. Seismic interferometry by crosscorrelation and by multidimensional deconvolution: A systematic comparison, Geophysical Journal International, 185(3), p.1335-1364. 10.1111/j.1365-246X.2011.05007.x
Wen, W. and Kalkan, E., 2017. System identification based on deconvolution and cross correlation: An application to a 20‐story instrumented building in Anchorage, Alaska, Bulletin of the Seismological Society of America, 107(2), p.718-740. 10.1785/0120160069
Yao, H. and Van der Hilst, R.D., 2009. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet, Geophysical Journal International, 179, p.1113-1132. 10.1111/j.1365-246X.2009.04329.x
Zhang, Y., Li, Y.E., Zhang, H., and Ku, T., 2019. Near-surface site investigation by seismic interferometry using urban traffic noise in Singapore, Geophysics, 84(2), p.B169-B180. 10.1190/geo2017-0798.1
Zhao, K., Yang, Y., and Luo, Y., 2020, Broadband finite frequency ambient noise tomography: A case study in the western United States using USArray, stations, Journal of Geophysical Research: Solid Earth, 125, e2019JB019314p. 10.1029/2019JB019314
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 59
  • No :2
  • Pages :205-217
  • Received Date : 2022-01-19
  • Revised Date : 2022-04-19
  • Accepted Date : 2022-04-26