All Issue

2021 Vol.58, Issue 2 Preview Page

Research Paper

April 2021. pp. 119-129
Abstract
References
1
Bangerth, W., Klie, H., Wheeler, M.F., Stoffa, P.L., and Sen, M.K., 2006. On optimization algorithms for the reservoir oil well placement problem. Computational Geosciences, 10, p.303-319. 10.1007/s10596-006-9025-7
2
Bellout, M.C., Echeverría Ciaurri, D., Durlofsky, L.J., Foss, B., and Kleppe, J., 2012. Joint optimization of oil well placement and controls. Computational Geosciences, 16, 1061-1079. 10.1007/s10596-012-9303-5
3
Chen, Y., Oliver, D.S., and Zhang, D., 2009. Efficient ensemble-based closed-loop production optimization. SPE Journal, 14, p.634-645. 10.2118/112873-PA
4
Dyes, A.B., Caudle, B.H., and Erickson, R.A., 1954. Oil production after breakthrough as influenced by mobility ratio. Journal of Petroleum Technology, 6(4), p.27-32. 10.2118/309-G
5
Fonseca, R.M., Kahrobaei, S.S., Van-Gastel, L.J.T., Leeuwenburgh, O., and Jansen, J.D., 2015. Quantification of the impact of ensemble size on the quality of an ensemble gradient using principles of hypothesis testing. SPE Reservoir Simulation Symposium, Society of Petroleum Engineers, p.804-828. 10.2118/173236-MS
6
Fonseca, R.R.M., Chen, B., Jansen, J.D., and Reynolds, A., 2017. A stochastic simplex approximate gradient (StoSAG) for optimization under uncertainty. International Journal for Numerical Methods in Engineering, 109(13), p.1756-1776. 10.1002/nme.5342
7
Gao, G., Li, G., and Reynolds, A.C., 2007. A stochastic optimization algorithm for automatic history matching. SPE Journal, 12, p.196-208. 10.2118/90065-PA
8
Isebor, O.J., Echeverrı, D., and Durlofsky, L.J., 2014. Generalized field-development optimization with derivative-free procedures. SPE Journal, 19, p.891-908. 10.2118/163631-PA
9
Jeong, H., Sun, A.Y., Jeon, J., Min, B., and Jeong, D., 2020. Efficient ensemble-based stochastic gradient methods for optimization under geological uncertainty. Frontiers in Earth Science, 8, p.108. 10.3389/feart.2020.00108
10
Jeong, H., Sun, A.Y., and Zhang, X., 2018. Cost-optimal design of pressure-based monitoring networks for carbon sequestration projects, with consideration of geological uncertainty. International Journal of Greenhouse Gas Control, 71, p.278-292. 10.1016/j.ijggc.2018.02.014
11
Kim, J., Kang, B., Jeong, H., and Choe, J., 2019. Field development optimization using a cooperative micro-particle swarm optimization with parameter integration schemes. Journal of Petroleum Science and Engineering, 183, p.106416. 10.1016/j.petrol.2019.106416
12
Li, G., and Reynolds, A.C., 2011. Uncertainty quantification of reservoir performance predictions using a stochastic optimization algorithm. Computational Geosciences, 15, p.451-462. 10.1007/s10596-010-9214-2
13
Li, L., Jafarpour, B., and Mohammad-Khaninezhad, M.R., 2013. A simultaneous perturbation stochastic approximation algorithm for coupled well placement and control optimization under geologic uncertainty. Computational Geosciences, 17, p.167-188. 10.1007/s10596-012-9323-1
14
McKay, M.D., Beckman, R.J., and Conover, W.J., 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, p.239. 10.2307/1268522
15
Nocedal, J. and Wright, S.J., 2006. Numerical Optimization, Springer, New York, USA.
16
Spall, J.C., 1992. Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation. IEEE transactions on automatic control, 37, p.332-341. 10.1109/9.119632
17
Stordal, A.S., Szklarz, S.P., and Leeuwenburgh, O., 2016. A theoretical look at ensemble-based optimization in reservoir management. Mathematical Geosciences, 48(4), p.399-417. 10.1007/s11004-015-9598-6
18
Sun, N.-Z. and Sun, A., 2015. Model calibration and parameter estimation, Springer, New York, USA. 10.1007/978-1-4939-2323-6
19
Yan, X. and Reynolds, A.C., 2014. Optimization algorithms based on combining FD approximations and stochastic gradients compared with methods based only on a stochastic gradient. SPE Journal, 19, p.873-890. 10.2118/163613-PA
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 58
  • No :2
  • Pages :119-129
  • Received Date :2021. 01. 08
  • Revised Date :2021. 04. 01
  • Accepted Date : 2021. 04. 27