All Issue

2021 Vol.58, Issue 2

Research Paper

April 2021. pp. 87-99
Abstract
References
1
Akgun, A., 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir. Turkey Landslides, 9(1), p.93-106. 10.1007/s10346-011-0283-7
2
Chang, K.T., Merghadi, A., Yunus, A.P., Pham, B.T., and Dou, J., 2019. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Scientific Reports, 9(1), 12296. 10.1038/s41598-019-48773-231444375PMC6707277
3
Choi, Y., Park, H.D., Sunwoo, C., and Jung, Y.B., 2009. Application of Fuzzy Theory and AHP to Evaluate the Slope Instability at Pasir Open Pit Coal Mine, Indonesia. Journal of the Korean Society of Mineral and Energy Resources Engineering, 46(1), p.45-60.
4
Dai, F.C., Lee, C.F., and Ngai, Y.Y., 2002. Landslide risk assessment and management: an overview. Engineering Geology, 64, p.65-87. 10.1016/S0013-7952(01)00093-X
5
Dragićević, S., Lai, T., and Balram, S., 2015. GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments. Habitat International, 45, p.114-125. 10.1016/j.habitatint.2014.06.031
6
Haque, U., da Silva, P.F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., Lee, J., Yamamoto, T., Keellings, D., Wu, J.H., and Glass, G.E., 2019. The human cost of global warming: Deadly landslides and their triggers (1995-2014). Science of the Total Environment, 682, p.673-684. 10.1016/j.scitotenv.2019.03.41531129549
7
Kim, W.Y., Lee, S., Kim, K.S., and Chae, B.G., 1998. Landslide types and susceptibilities related to geomorphic characteristics - Yeonchon-Chulwon area -. The Journal of Engineering Geology, 8(2), p.115-130.
8
Kim, Y.J., Kim, W.Y., and Yu, I.H., 1992. GIS technology for analyzing regional geologic hazards (Landslide). The Journal of Engineering Geology, 2(2), p.131-140.
9
Koo, Y.H., Kim, S.M., Oh, M.C., and Park, H.D., 2018. Landslide Risk Assessment at the Gumdeok Mine in North Korea using Satellite Images and GIS Spatial Data. Journal of the Korean Society of Mineral and Energy Resources Engineering, 55(4), p.259-271. 10.32390/ksmer.2018.55.4.259
10
Landslide Information System, 2021.01.28, https://sansatai.forest.go.kr/
11
Lee, C.W., Woo, C.S., Kim, D.Y., Chung, S.H., and Koo, K.S., 2014. Understanding Landslides for Public Safety and National Territorial Preservation, National Institute of Forest Science, Seoul, Korea, 71p.
12
Lee, H. and Kim, G., 2012. Landslide risk assessment in Inje using logistic regression model. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 30(3), p.313-321. 10.7848/ksgpc.2012.30.3.313
13
Lee, J.D., Yeon, S.H., Kim, S.G., and Lee, H.C., 2002. The application of GIS for the prediction of landslide-potential areas. Journal of the Korean Association of Geographic Information Studies, 5(1), p.38-47.
14
Lee, S. and Pradhan, B., 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), p.33-41. 10.1007/s10346-006-0047-y
15
Lee, S., 2019. Current and future status of GIS-based landslide susceptibility mapping: a literature review. Korean Journal of Remote Sensing, 35(1), p.179-193.
16
Lee, Y. J., Park, G. A., and Kim, S. J., 2006. Analysis of landslide hazard area using logistic regression analysis and AHP (Analytical Hierarchy Process) approach. Journal of The Korean Society of Civil Engineers D, 26(5D), p.861- 867.
17
Ministry of Economy and Finance, 2020. Participatory Budget Discussion Report for Forest Disaster Prevention and Recovery, Sejong, Korea, 11p.
18
National Territorial Information Platform, 2021.01.28, http://map.ngii.go.kr/
19
Oh, H.J., 2010. Landslide detection and landslide susceptibility mapping using aerial photos and artificial neural networks. Korean journal of remote sensing, 26(1), p.47-57.
20
Park, S.J., Lee, C.W., Lee, S., and Lee, M.J., 2018. Landslide Susceptibility Mapping and Comparison Using Decision Tree Models: A Case Study of Jumunjin Area, Korea. Remote Sensing, 10(10), 1545. 10.3390/rs10101545
21
Pradhan, B. and Lee, S., 2010. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software, 25(6), p.747-759. 10.1016/j.envsoft.2009.10.016
22
Shin, H.W. and Lee, S.G., 2018. Comparison of landslide susceptibility analysis considering the characteristics of landslide trigger points. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 36(2), p.59-66.
23
Süzen, M.L. and Doyuran, V., 2004. A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environmental Geology, 45(5), p.665-679. 10.1007/s00254-003-0917-8
24
Xu, Z., Kwak, H., Lee, W.K., Park, T., Kwon, T.H., and Park, S., 2011. Assessment of landslide on climate change using GIS. Journal of Climate Change Research, 2(1), p.43-54.
25
Yilmaz, I., 2009. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Sciences, 61(4), p.821-836. 10.1007/s12665-009-0394-9
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 58
  • No :2
  • Pages :87-99
  • Received Date :2021. 02. 09
  • Revised Date :2021. 03. 22
  • Accepted Date : 2021. 04. 27