All Issue

2021 Vol.58, Issue 1S Preview Page

Research Paper (Special Issue)

February 2021. pp. 54-60
Abstract
References
1
Abin, C.A. and Hollibaugh, J.T., 2013. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism. Environ. Sci. Technol. 48, p.681-688. 10.1021/es404098z24319985
2
Arnold, R.G., Hoffmann, M.R., DiChristina, T.J., and Picardal, F.W., 1990. Regulation of dissimilatory Fe(III) reduction activity in Shewanella putrefaciens. Appl. Environ. Microbiol., 56(9), p.2811-2817. 10.1128/AEM.56.9.2811-2817.199016348289PMC184848
3
Bisconti, L., Pepi, M., Mangani, S., and Baldi, F., 1997. Reduction of vanadate to vanadyl by a strain of Saccharomyces cerevisiae. Biometals, 10, p.239-246. 10.1023/A:10183600298989353870
4
Bowman, B.J., 1983. Vanadate uptake in Neurospora crassa occurs via phosphate transport system II. J. Bacteriol., 153, p.286-291. 10.1128/JB.153.1.286-291.19836217192PMC217368
5
Butler, A., 1998. Acquisition and utilization of transition metal ions by marine organisms. Science, 281, p.207-210. 10.1126/science.281.5374.2079660742
6
Carpentier, W., Sandra, K., Smet, D.I., Brige, A., Smet, D.L., and Van Beeumen, J., 2003. Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl. Environ. Microbiol., 69, p.3636-3639. 10.1128/AEM.69.6.3636-3639.200312788772PMC161487
7
Carpentier, W., Smet, D.L., Van Beeumen, J., and Brige, A., 2005. Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor. J. Bacteriol., 187, p.3293-3301. 10.1128/JB.187.10.3293-3301.200515866913PMC1111990
8
Choi, C., Kim, S., Kim, R., Choi, Y., Kim, S., Jung, H.-Y., Yang, J.H., and Kim, H.T., 2017. A review of vanadium electrolytes for vanadium redox flow batteries. Renew. Sust. Energ. Rev., 69, p.263-274. 10.1016/j.rser.2016.11.188
9
Choi, J.H. and Lim, J.H., 2016. Current state and prospect of secondary battery for ESS. J. Electric Power and Energy, 2, p.23-28.
10
Crans, D.C., Amin, S.S., and Keramidas, A.D., 1998. Chemistry of relevance to vanadium in the environment. In: Nriagu, J.O. (Ed.), Vanadium in the Environment. Part 1: Chemistry and Biochemistry. John Wiley & Sons, Inc., New York, N.Y., p.73-95.
11
Cunha, A., Martins, J., Rodrigues, N., and Brito, F.P., 2015. Vanadium redox flow batteries: a technology review. Int. J. Energy Res., 39, p.889-918. 10.1002/er.3260
12
Domingo, J.L., 2000. Vanadium and diabetes. What about vanadium toxicity? Molecular and Cellular Biochemistry, 203, p.185-187. 10.1023/A:100706701133810724348
13
Evans, H.T. and White, J.S., 1987. The colorful vanadium minerals: a brief review and a new classification. Mineral. Rec., 18, p.333-340.
14
Han, S., Kim, Y.J., and Heo, J.H., 2014. Development and domestic substantiation of vanadium redox flow battery. J. Electrical World Monthly Magazine, 6, p.48-54.
15
Hope, B.K., 1994. A global biogeochemical budget for vanadium. Sci. Total Environ., 141, p.1-10. 10.1016/0048-9697(94)90012-4
16
Joo, Y.J., Han, H.-J., Ahn J.S., and Lee, J.-U., 2016. Microbial effects on geochemical behavior of antimony and synthesis of antimony trioxide. Journal of The Korean Society of Mineral and Energy Resources Engineers, 53, p.440-451. 10.12972/ksmer.2016.53.5.440
17
Ju. J., Fu, H.G., Wei, S.Z., Sang, P., Wu, Z.W., Tang, K.Z., and Lei, Y.P., 2018. Effects of Cr and V additions on the microstructure and properties of high-vanadium wear-resistant alloy steel. Ironmaking & Steelmaking, 45(2), p.176-186. 10.1080/03019233.2016.1250491
18
Kim, S.-M. and Jeon, H.-S., 2019. Separation processes for self-sufficient recovery of vanadium resources in Korea. Journal of The Korean Society of Mineral and Energy Resources Engineers, 56(3), p.292-302. 10.32390/ksmer.2019.56.3.292
19
Lee, H.B., 2009. Domestic vanadium stock adequacy. Mineral and Industry, 22(1), p.60-70.
20
Lmtiaz, M., Rizwan, M.S., Xiong, S., Li, H., Ashraf, M., Shahzad, S.M., Shahzad, M., Rizwan, M., and Tu, S., 2015. Vanadium, recent advancements and research prospects: A review. Environment International, 80, p.79-88. 10.1016/j.envint.2015.03.01825898154
21
Lyalikova, N.N. and Yurkova, N.A., 1992. Role of microorganisms in vanadium concentration and dispersion. Geomicrobiol. J., 10, p.15-26. 10.1080/01490459209377901
22
Mannazzu, I., Guerra, E., Strabbioli, R., Masia, A., Maestrale, G.B., Zoroddu, M.A., and Fatichenti, F., 1997. Vanadium affects vacuolation and phosphate metabolism in Hansenula polymorpha. FEMS Microbiol. Lett., 147, p.23-28. 10.1111/j.1574-6968.1997.tb10215.x9037759
23
Nguyen, V.K. and Lee, J.-U., 2014. Isolation and characterization of antimony-reducing bacteria from sediments collected in the vicinity of an antimony factory. Geomirobiol. J. 31, p.855-861. 10.1080/01490451.2014.901440
24
Ortiz-Bernad, I., Anderson, R.T., Vrionis, H.A., and Lovley, D.R., 2004. Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl. Environ. Microbiol., 70, p.3091-3095. 10.1128/AEM.70.5.3091-3095.200415128571PMC404428
25
Patel, B., Haswell, S.J., and Grzeskowiak, R., 1989. Flow- injection flame atomic-absorption spectrometry system for the pre-concentration of vanadium(V) and characterization of vanadium(IV) and vanadium(V) species. J. Anal. At. Spectrom., 4, p.195-198. 10.1039/ja9890400195
26
Rehder, D., 1995. Inorganic considerations of the function of vanadium in biological systems. In: Sigel, H., Sigel, A. (Eds.), Metal Ions in Biological Systems, 31. Marcel Dekker, Inc., New York, N.Y., p.1-43.
27
Rehder, D., 2013. The future of/for vanadium. Dalton Trans., 42, p.11749-11761. 10.1039/c3dt50457c23567506
28
Rychcik, M. and Skyllas-Kazacos, M., 1988. Characteristics of a new all-vanadium redox flow battery. J. Power Sources, 22, p.59-67. 10.1016/0378-7753(88)80005-3
29
Skyllas-Kazacos, M. and Grossmith, F., 1987. Efficient vanadium redox flow cell. J. Electrochem. Soc., 134, p.2950-2953. 10.1149/1.2100321
30
Sum, E., Rychcik, M., and Skyllas-Kazacos, M., 1985. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources, 16, p.85-95. 10.1016/0378-7753(85)80082-3
31
van Marwijk, J., Opperman, D.J., Piater, L.A., and van Heerden, E., 2009. Reduction of vanadium(V) by Enterobacter cloacae EV-SA01 isolated from a South African deep gold mine. Biotechnol. Lett., 31, p.845-849. 10.1007/s10529-009-9946-z19229481
32
Zhang, J., Dong, H., Zhao, L., McCarrick, R., and Agrawal, A., 2014. Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens. Chem. Geol., 370, p.29-39. 10.1016/j.chemgeo.2014.01.014
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 58
  • No :1
  • Pages :54-60
  • Received Date :2021. 01. 19
  • Revised Date :2021. 02. 08
  • Accepted Date : 2021. 02. 23