Research Paper
Agartan, E., Gaddipati, M., Yip, Y., Savage, B., and Ozgen, C., 2018. CO2 storage in depleted oil and gas fields in the gulf of mexico, International Journal of Greenhouse Gas Control, 72, p.38-48.
10.1016/j.ijggc.2018.02.022Allinson, W.G., Cinar, Y., Neal, P.R., Kaldi, J., and Paterson, L., 2014. CO2-Storage capacity-combining geology, engineering and economics, January 2014 SPE Economics & Management, 13p.
10.2118/133804-PAAnalytics Vidhya, 2023.12.13., https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/
Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P., and Mathiassen, O.M., 2007. CO2 storage capacity estimation: methodology and gaps, International Journal of Greenhouse Gas Control, 1(4), p.430-443.
10.1016/S1750-5836(07)00086-2Breiman, L., 2001. Random Forests, 45, Kluwer Academic Publishers, Alphen aan den Rijin, Netherlands, p.5-32.
Cao, C., Liu, H., Hou, Z., Mehmood, F., Liao, J., and Feng, W., 2020. A review of CO2 storage in view of safety and cost-effectiveness, Energies 2020, 13(3), 45p.
10.3390/en13030600Chen, T. and Guestrin, C., 2016. Xgboost: A scalable tree boosting system, Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, ACM, California, San Francisco, USA, p.785-794.
10.1145/2939672.2939785Davoodi, S., Vo-Thanh, H., Wood, D.A., Mehrad, M., Rukavishnikov, V.S., and Dai, Z., 2023. Machine-learning predictions of solubility and residual trapping indexes of carbon dioxide from global geological storage sites, Expert Systems With Applications, 222, 18p.
10.1016/j.eswa.2023.119796Hughes, D.S., 2009. Carbon storage in depleted gas fields: Key challenges, Energy Procedia, 1(1), p.3007-3014.
10.1016/j.egypro.2009.02.078Ismail, I. and Gaganis, V., 2023. Carbon capture, utilization, and storage in saline aquifers: subsurface policies, development plans, well control strategies and optimization approaches-a review, Clean Technologies, 5(2), p.609-637.
10.3390/cleantechnol5020031Kaldas, M.N., Saunders, B., Nasiri, A., and Barben, S., 2023. CO2 Sequestration in a limited-data depleted gas reservoir for reservoir capacity assessment and injection optimization - case study, SPE Reservoir Characterisation and Simulation Conference and Exhibition, SPE, Abu Dhabi, UAE, 17p.
10.2118/212661-MSKhan, N.A., 2022. CO2Storage in Depleted Gas Field Reservoir Model and Sensitivity Analysis using Numerical Simulation Techniques, MS Thesis, Norway University of Science and Technology, Norway, 150p.
Kim, J.S., Cho, J.K, Lee, W.C., Seo, E.S., Kim, J.H., Lee, H.S., and Lee, H.S., 2023. A numerical modeling of CO2 injection into the depleted Donghae-1 gas field, Journal of the Korean Society of Mineral and Energy Resources Engineers, 60(5), p.429-443.
10.32390/ksmer.2023.60.5.429Kim, Y.M., Jang, H.C., Kim, J.G., and Lee, J.H., 2017. Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network, Applied Energy, 185(1), p.916-928.
10.1016/j.apenergy.2016.10.012Kutz, J.N., 2017. Deep learning in fluid dynamics, Cambridge University Press, 814, p.1-4.
10.1017/jfm.2016.803Moreira, D., Barandas, M., Rocha, T., Alves, P., Santos, R., Leonardo, R., Vieira, P., and Gamboa, H., 2021. Human activity recognition for indoor localization using smartphone inertial sensors, Sensors, 21(18), 19p.
10.3390/s2118631634577526PMC8471786Nghiem, L., 2010. Simulation and optimization of trapping processes for CO2 storage in saline aquifers, Journal of Canadian Petroleum Technology, 49(8), 8p.
10.2118/139429-PAPark, Y.C. and Huh, D.G., 2013. A proposal for the korean classification system of CO2 geological storage resources, Journal of the Korean Society of Mineral and Energy Resources Engineers, 50(1), p.170-177.
10.12972/ksmer.2013.50.1.170Raza, A., Gholami, R., Rezaee, R., Bing, C.H., Nagarajan, R., and Hamid, M.A., 2017. Assessment of CO2 residual trapping in depleted reservoirs used for geosequestration, Journal of Natural Gas Science and Engineering, 43, p.137-155.
10.1016/j.jngse.2017.04.001Rycroft, L., Neele. F., Bruun, V.B., Meneguluolo, R., Moor, J.D., Schiferli, W., Candela, T.G., Snæbjornsdottir, S.O., Hoffman, N., and O'Brien, S., 2024. Deployment of Carbon Capture and Storage, Woodhead Publishing, Sawston, UK, p.133-266.
10.1016/B978-0-323-95498-3.00003-1Safaei-Farouji, M., Vo-Thanh, H., Dai, Z., Mehbodniya, A., Rahimi, M., Ashraf, U., and Radwan, A.E., 2022. Exploring the power of machine learning to predict carbon dioxide trapping efficiency in saline aquifers for carbon geological storage project, Journal of Cleaner Production, 372, 15p.
10.1016/j.jclepro.2022.133778Song, Y.S., Sung, W.M., Jang, Y.H., and Jung, W.D., 2020. Application of an artificial neural network in predicting the effectiveness of trapping mechanisms on CO2 sequestration in saline aquifers, International Journal of Greenhouse Gas Control, 98, 14p.
10.1016/j.ijggc.2020.103042Vo-Thanh, H. and Lee, K.K., 2022. Application of machine learning to predict CO2 trapping performance in deep saline aquifers, Energy, 239, 14p.
10.1016/j.energy.2021.122457- Publisher :The Korean Society of Mineral and Energy Resources Engineers
- Publisher(Ko) :한국자원공학회
- Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
- Journal Title(Ko) :한국자원공학회지
- Volume : 61
- No :3
- Pages :256-270
- Received Date : 2024-05-09
- Revised Date : 2024-06-06
- Accepted Date : 2024-06-24
- DOI :https://doi.org/10.32390/ksmer.2024.61.3.256