All Issue

2024 Vol.61, Issue 3S Preview Page

Research Paper

30 June 2024. pp. 256-270
Abstract
References
1

Agartan, E., Gaddipati, M., Yip, Y., Savage, B., and Ozgen, C., 2018. CO2 storage in depleted oil and gas fields in the gulf of mexico, International Journal of Greenhouse Gas Control, 72, p.38-48.

10.1016/j.ijggc.2018.02.022
2

Allinson, W.G., Cinar, Y., Neal, P.R., Kaldi, J., and Paterson, L., 2014. CO2-Storage capacity-combining geology, engineering and economics, January 2014 SPE Economics & Management, 13p.

10.2118/133804-PA
4

Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P., and Mathiassen, O.M., 2007. CO2 storage capacity estimation: methodology and gaps, International Journal of Greenhouse Gas Control, 1(4), p.430-443.

10.1016/S1750-5836(07)00086-2
5

BOEM, 2023.12.13., https://www.data.boem.gov/

6

Breiman, L., 2001. Random Forests, 45, Kluwer Academic Publishers, Alphen aan den Rijin, Netherlands, p.5-32.

7

Cao, C., Liu, H., Hou, Z., Mehmood, F., Liao, J., and Feng, W., 2020. A review of CO2 storage in view of safety and cost-effectiveness, Energies 2020, 13(3), 45p.

10.3390/en13030600
8

Chen, T. and Guestrin, C., 2016. Xgboost: A scalable tree boosting system, Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, ACM, California, San Francisco, USA, p.785-794.

10.1145/2939672.2939785
9

Davoodi, S., Vo-Thanh, H., Wood, D.A., Mehrad, M., Rukavishnikov, V.S., and Dai, Z., 2023. Machine-learning predictions of solubility and residual trapping indexes of carbon dioxide from global geological storage sites, Expert Systems With Applications, 222, 18p.

10.1016/j.eswa.2023.119796
10

Hughes, D.S., 2009. Carbon storage in depleted gas fields: Key challenges, Energy Procedia, 1(1), p.3007-3014.

10.1016/j.egypro.2009.02.078
11

Iglauer, S. 2011. Mass Transfer-Advanced Aspects, Intechopen, London, United Kingdom, p.233-262.

12

Ismail, I. and Gaganis, V., 2023. Carbon capture, utilization, and storage in saline aquifers: subsurface policies, development plans, well control strategies and optimization approaches-a review, Clean Technologies, 5(2), p.609-637.

10.3390/cleantechnol5020031
13

Kaldas, M.N., Saunders, B., Nasiri, A., and Barben, S., 2023. CO2 Sequestration in a limited-data depleted gas reservoir for reservoir capacity assessment and injection optimization - case study, SPE Reservoir Characterisation and Simulation Conference and Exhibition, SPE, Abu Dhabi, UAE, 17p.

10.2118/212661-MS
14

Khan, N.A., 2022. CO2Storage in Depleted Gas Field Reservoir Model and Sensitivity Analysis using Numerical Simulation Techniques, MS Thesis, Norway University of Science and Technology, Norway, 150p.

15

Kim, J.S., Cho, J.K, Lee, W.C., Seo, E.S., Kim, J.H., Lee, H.S., and Lee, H.S., 2023. A numerical modeling of CO2 injection into the depleted Donghae-1 gas field, Journal of the Korean Society of Mineral and Energy Resources Engineers, 60(5), p.429-443.

10.32390/ksmer.2023.60.5.429
16

Kim, Y.M., Jang, H.C., Kim, J.G., and Lee, J.H., 2017. Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network, Applied Energy, 185(1), p.916-928.

10.1016/j.apenergy.2016.10.012
17

Kutz, J.N., 2017. Deep learning in fluid dynamics, Cambridge University Press, 814, p.1-4.

10.1017/jfm.2016.803
18

Moreira, D., Barandas, M., Rocha, T., Alves, P., Santos, R., Leonardo, R., Vieira, P., and Gamboa, H., 2021. Human activity recognition for indoor localization using smartphone inertial sensors, Sensors, 21(18), 19p.

10.3390/s2118631634577526PMC8471786
19

Nghiem, L., 2010. Simulation and optimization of trapping processes for CO2 storage in saline aquifers, Journal of Canadian Petroleum Technology, 49(8), 8p.

10.2118/139429-PA
20

Park, Y.C. and Huh, D.G., 2013. A proposal for the korean classification system of CO2 geological storage resources, Journal of the Korean Society of Mineral and Energy Resources Engineers, 50(1), p.170-177.

10.12972/ksmer.2013.50.1.170
21

Raza, A., Gholami, R., Rezaee, R., Bing, C.H., Nagarajan, R., and Hamid, M.A., 2017. Assessment of CO2 residual trapping in depleted reservoirs used for geosequestration, Journal of Natural Gas Science and Engineering, 43, p.137-155.

10.1016/j.jngse.2017.04.001
22

Rycroft, L., Neele. F., Bruun, V.B., Meneguluolo, R., Moor, J.D., Schiferli, W., Candela, T.G., Snæbjornsdottir, S.O., Hoffman, N., and O'Brien, S., 2024. Deployment of Carbon Capture and Storage, Woodhead Publishing, Sawston, UK, p.133-266.

10.1016/B978-0-323-95498-3.00003-1
23

Safaei-Farouji, M., Vo-Thanh, H., Dai, Z., Mehbodniya, A., Rahimi, M., Ashraf, U., and Radwan, A.E., 2022. Exploring the power of machine learning to predict carbon dioxide trapping efficiency in saline aquifers for carbon geological storage project, Journal of Cleaner Production, 372, 15p.

10.1016/j.jclepro.2022.133778
24

Song, Y.S., Sung, W.M., Jang, Y.H., and Jung, W.D., 2020. Application of an artificial neural network in predicting the effectiveness of trapping mechanisms on CO2 sequestration in saline aquifers, International Journal of Greenhouse Gas Control, 98, 14p.

10.1016/j.ijggc.2020.103042
25

Vo-Thanh, H. and Lee, K.K., 2022. Application of machine learning to predict CO2 trapping performance in deep saline aquifers, Energy, 239, 14p.

10.1016/j.energy.2021.122457
26

Whitson, C.H. and Brulé, M.R., 2000. Phase Behavior, Henry L. Doherty Memorial Fund of AIME, Texas, USA, 233p.

10.2118/9781555630874
27

Zhang, F. and O'Donell, 2020. Machine Learning:Methods and Applications to Brain Disorders, Academic Press, Cambridge, USA, p.123-140.

Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 61
  • No :3
  • Pages :256-270
  • Received Date : 2024-05-09
  • Revised Date : 2024-06-06
  • Accepted Date : 2024-06-24