All Issue

2022 Vol.59, Issue 2 Preview Page

Research Paper

30 April 2022. pp. 148-160
Abstract
References
1
Baysal, E., Kosloff, D.D., and Sherwood, W.C., 1983. Reverse time migration, Geophysics, 48, p.1514-1524. 10.1190/1.1441434
2
Bunks, C., Saleck, F.M., Zaleski, S., and Chavent, G., 1995. Multiscale seismic waveform inversion, Geophysics, 60, p.1457-1473. 10.1190/1.1443880
3
Chollet, F., 2017a. Xception: Deep learning with depthwise separable convolutions, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p.1251-1258. 10.1109/CVPR.2017.195
4
Chollet, F., 2017b. Deep Learning with Python, Manning, New York, USA, p.261-263.
5
Gauthier, O., Virieux, J., and Tarantola, A., 1986. Two-dimensional nonlinear inversion of seismic waveforms: Numerical results, Geophysics, 51, p.1387-1403. 10.1190/1.1442188
6
Glorot, X. and Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks, Proceedings of Machine Learning Research, 9, p.249-256.
7
Hornik, K., Stinchcombe, M., and White, H., 1990. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks, Neural Networks, 3, p.551-560. 10.1016/0893-6080(90)90005-6
8
Kaiser, L., Gomez, A.N., and Chollet, F., 2017. Depthwise separable convolutions for neural machine translation, Computation and Language, arXiv:1706.03059v2.
9
Keys, R.G., 1985. Absorbing boundary conditions for acoustic media, Geophysics, 50, p.892-902. 10.1190/1.1441969
10
Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic optimization, 3rd International Conference on Learning Representations, p.1-15.
11
Li, S., Liu, B., Ren, Y., Chen, Y., Yang, S., Wang, Y., and Jiang, P., 2020. Deep-learning inversion of seismic data, IEEE Transactions on Geoscience and Remote Sensing, 58, p.2135-2149. 10.1109/TGRS.2019.2953473
12
Liu, B., Yang, S., Ren, Y., Xu, X., Jiang, P., and Chen., Y., 2021. Deep-learning seismic full-waveform inversion for realistic structural models, Geophysics, 86, p.R31-R44. 10.1190/geo2019-0435.1
13
Loffe, S. and Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proceedings of the 32nd International Conference on Machine Learning, 37, p.448-456.
14
Mora, P., 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic data, Geophysics, 52, p.1211-1228. 10.1190/1.1442384
15
Odena, A., Dumoulin, V., and Olah, C., 2016. Deconvolution and checkerboard artifacts. Distill, 1(10), e3. 10.23915/distill.00003
16
Pratt, R.G. and Worthington, M.H., 1990. Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-equation method, Geophysical Prospecting, 38, p.287-310. 10.1111/j.1365-2478.1990.tb01846.x
17
Pratt, R.G., Shin, C., and Hicks, G.J., 1998. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophysical Journal International, 133, p.341-362. 10.1046/j.1365-246X.1998.00498.x
18
Shin, C. and Cha, Y., 2008. Waveform inversion in the Laplace domain, Geophysical Journal International, 173, p.922-931. 10.1111/j.1365-246X.2008.03768.x
19
Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, p.1259-1266. 10.1190/1.1441754
20
Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, p.WCC1-WCC26. 10.1190/1.3238367
21
Wang, W. and Ma, J., 2020. Velocity model building in a crosswell acquisition geometry with image-trained artificial neural networks, Geophysics, 85, p.U31-U46. 10.1190/geo2018-0591.1
22
Wang, Z., Bovik, A.C., Sheikh, H.R., and Simoncelli, E.P., 2004. Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, 13, p.600-612. 10.1109/TIP.2003.81986115376593
23
Wu, Y. and Lin, Y., 2019. InversionNet: A real-time and accurate full waveform inversion with CNNs and continuous CRFs, Signal Processing, arXiv:1811.07875v2.
24
Yang, F. and Ma, J., 2019. Deep-learning inversion: A next-generation seismic velocity model building method, Geophysics, 84, p.R583-R599. 10.1190/geo2018-0249.1
25
Zhang, J., Brink, U.S., and Toksoz, M.N., 1998. Nonlinear refraction and reflection travel time tomography, Journal of Geophysical Research Solid Earth, 103, p.29743-29757. 10.1029/98JB01981
26
Zhang, Z. and Lin, Y., 2020. Data-driven seismic waveform inversion: A study on the robustness and generalization, IEEE Transactions on Geoscience and Remote Sensing, 58, p.6900-6913. 10.1109/TGRS.2020.2977635
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 59
  • No :2
  • Pages :148-160
  • Received Date :2022. 03. 02
  • Revised Date :2022. 04. 07
  • Accepted Date : 2022. 04. 26